Poor relation between biomechanical and clinical studies for the proximal femoral locking compression plate

Bjarke Viberg, Katrine M V Rasmussen, Søren Overgaard, Cecilia Rogmark, Bjarke Viberg, Katrine M V Rasmussen, Søren Overgaard, Cecilia Rogmark

Abstract

Background and purpose - The proximal femur locking compression plate (PF-LCP) is a new concept in the treatment of hip fractures. When releasing new implants onto the market, biomechanical studies are conducted to evaluate performance of the implant. We investigated the relation between biomechanical and clinical studies on PF-LCP. Methods - A systematic literature search of relevant biomechanical and clinical studies was conducted in PubMed on December 1, 2015. 7 biomechanical studies and 15 clinical studies were included. Results - Even though the biomechanical studies showed equivalent or higher failure loads for femoral neck fracture, the clinical results were far worse, with a 37% complication rate. There were no biomechanical studies on pertrochanteric fractures. Biomechanical studies on subtrochanteric fractures showed that PF-LCP had a lower failure load than with proximal femoral nail, but higher than with angled blade plate. 4 clinical studies had complication rates less than 8% and 9 studies had complication rates between 15% and 53%. Interpretation - There was no clear relation between biomechanical and clinical studies. Biomechanical studies are generally inherently different from clinical studies, as they examine the best possible theoretical use of the implant without considering the long-term outcome in a clinical setting. Properly designed clinical studies are mandatory when introducing new implants, and they cannot be replaced by biomechanical studies.

Figures

Figure 1.
Figure 1.
Locking compression plate used for treatment of a proximal femoral fracture.

References

    1. Altintas B, Biber R, Bail H J.. The learning curve of proximal femoral nailing. Acta Orthop Traumatol Turc 2014; 48 (4): 396–400.
    1. Aminian A, Gao F, Fedoriw W W, Zhang L Q, Kalainov D M, Merk B R.. Vertically oriented femoral neck fractures: mechanical analysis of four fixation techniques. J Orthop Trauma 2007; 21 (8): 544–8.
    1. Azboy I, Demirtas A, Gem M, Cakir I A, Tutak Y.. A comparison of proximal femoral locking plate versus 95-degree angled blade plate in the treatment of reverse intertrochanteric fractures. Eklem Hastalik Cerrahisi 2014; 25 (1): 15–20.
    1. Basso T, Klaksvik J, Syversen U, Foss O A.. Biomechanical femoral neck fracture experiments–a narrative review. Injury 2012; 43 (10): 1633–9.
    1. Berkes M B, Little M T, Lazaro L E, Cymerman R M, Helfet D L, Lorich D G.. Catastrophic failure after open reduction internal fixation of femoral neck fractures with a novel locking plate implant. J Orthop Trauma 2012; 26 (10): e170–6.
    1. Bjorgul K, Novicoff W M, Saleh K J.. Learning curves in hip fracture surgery. Int Orthop 2011; 35 (1): 113–9.
    1. Burstein A H, Frankel V H.. A standard test for laboratory animal bone. J Biomech 1971; 4 (2): 155–8.
    1. Carr A J. Evidence-based orthopaedic surgery: what type of research will best improve clinical practice? J Bone Joint Surg Br 2005; 87 (12): 1593–4.
    1. Chalise P K, Mishra A K, Shah S B, Adhikari V, Singh R P.. Outcome of pertrochantric fracture of the femur treated with proximal femoral locking compression plate. Nepal Med Coll J 2012; 14 (4): 324–7.
    1. Crist B D, Khalafi A, Hazelwood S J, Lee M A.. A biomechanical comparison of locked plate fixation with percutaneous insertion capability versus the angled blade plate in a subtrochanteric fracture gap model. J Orthop Trauma 2009; 23 (9): 622–7.
    1. Dhamangaonkar A C, Joshi D, Goregaonkar A B, Tawari A A.. Proximal femoral locking plate versus dynamic hip screw for unstable intertrochanteric femoral fractures. J Orthop Surg (Hong Kong) 2013; 21 (3): 317–22.
    1. Floyd J C, O’Toole R V, Stall A, Forward D P, Nabili M, Shillingburg D, et al. . Biomechanical comparison of proximal locking plates and blade plates for the treatment of comminuted subtrochanteric femoral fractures. J Orthop Trauma 2009; 23 (9): 628–33.
    1. Floyd M W, France J C, Hubbard D F.. Early experience with the proximal femoral locking plate. Orthopedics 2013; 36 (12): e1488–94.
    1. Forward D P, Doro C J, O’Toole R V, Kim H, Floyd J C, Sciadini M F, et al. . A biomechanical comparison of a locking plate, a nail, and a 95 degrees angled blade plate for fixation of subtrochanteric femoral fractures. J Orthop Trauma 2012; 26 (6): 334–40.
    1. Glassner P J, Tejwani N C.. Failure of proximal femoral locking compression plate: a case series. J Orthop Trauma 2011; 25 (2): 76–83.
    1. Gunadham U, Jampa J, Suntornsup S, Leewiriyaphun B.. The outcome in early cases of treatment of subtrochanteric fractures with proximal femur locking compression plate. Malays Orthop J 2014; 8 (2): 22–8.
    1. Hazenberg J G, Hentunen T A, Heino T J, Kurata K, Lee T C, Taylor D.. Microdamage detection and repair in bone: fracture mechanics, histology, cell biology. Technol Health Care 2009; 17 (1): 67–75.
    1. Hu S J, Zhang S M, Yu G R.. Treatment of femoral subtrochanteric fractures with proximal lateral femur locking plates. Acta Ortop Bras 2012; 20 (6): 329–33.
    1. Jensen J S. Classification of trochanteric fractures. Acta Orthop Scand 1980a; 51 (5): 803–10.
    1. Jensen J S. Mechanical strength of sliding crew-plate hip implants. A biomechanical study of unstable trochanteric fractures. VI. Acta Orthop Scand 1980b; 51 (4): 625–32.
    1. Jensen J S, Tondevold E, Mossing N.. Unstable trochanteric fractures treated with the sliding screw-plate system. A biomechanical study of unstable trochanteric fractures. III. Acta Orthop Scand 1978; 49 (4): 392–7.
    1. Johnson B, Stevenson J, Chamma R, Patel A, Rhee S J, Lever C, et al. . Short-term follow-up of pertrochanteric fractures treated using the proximal femoral locking plate. J Orthop Trauma 2014; 28 (5): 283–7.
    1. Kyle R F, Gustilo R B, Premer R F.. Analysis of six hundred and twenty-two intertrochanteric hip fractures. J Bone Joint Surg Am 1979; 61 (2): 216–21.
    1. Latifi M H, Ganthel K, Rukmanikanthan S, Mansor A, Kamarul T, Bilgen M.. Prospects of implant with locking plate in fixation of subtrochanteric fracture: experimental demonstration of its potential benefits on synthetic femur model with supportive hierarchical nonlinear hyperelastic finite element analysis. Biomed Eng Online 2012; 11: 23.
    1. Lutter L D. Charlotte’s chocolate ice cream soda. Foot Ankle Int 2000; 21 (3): 181.
    1. Malchau H. On the importance of stepwise introduction of new hip implant technology: assessment of total hip replacement using clinical evaluation, radiostereometry, digitised radiography and a national hip registry. In: Ortopedisk kirurgi On the importance of stepwise introduction of new hip implant technology: assessment of total hip replacement using clinical evaluation, radiostereometry, digitised radiography and a national hip registry. University of Gothenburg; 1995; Doctoral.
    1. Malchau H, Bragdon C R, Muratoglu O K.. The stepwise introduction of innovation into orthopedic surgery: the next level of dilemmas. J Arthroplasty 2011; 26 (6): 825–31.
    1. Mardani-Kivi M, Mirbolook A, Khajeh Jahromi S, Rouhi Rad M.. Fixation of intertrochanteric fractures: dynamic hip screw versus locking compression plate. Trauma Mon 2013; 18 (2): 67–70.
    1. Matre K, Havelin L I, Gjertsen J E, Espehaug B, Fevang J M.. Intramedullary nails result in more reoperations than sliding hip screws in two-part intertrochanteric fractures. Clin Orthop Relat Res 2013a; 471 (4): 1379–86.
    1. Matre K, Havelin L I, Gjertsen J E, Vinje T, Espehaug B, Fevang J M.. Sliding hip screw versus IM nail in reverse oblique trochanteric and subtrochanteric fractures. A study of 2716 patients in the Norwegian Hip Fracture Register. Injury 2013b; 44 (6): 735–42.
    1. Matre K, Vinje T, Havelin L I, Gjertsen J E, Furnes O, Espehaug B, et al. . TRIGEN INTERTAN intramedullary nail versus sliding hip screw: a prospective, randomized multicenter study on pain, function, and complications in 684 patients with an intertrochanteric or subtrochanteric fracture and one year of follow-up. J Bone Joint Surg Am 2013c; 95 (3): 200–8.
    1. Miller D L, Goswami T.. A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clin Biomech (Bristol, Avon) 2007; 22 (10): 1049–62.
    1. Moher D, Liberati A, Tetzlaff J, Altman D G.. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010; 8 (5): 336–41.
    1. Müller M E, Nazarian S, Koch P, Schatzker J.. The comprehensive classification of fractures of long bones. Springer-Verlag, Berlin: 1990.
    1. Nowotarski P J, Ervin B, Weatherby B, Pettit J, Goulet R, Norris B.. Biomechanical analysis of a novel femoral neck locking plate for treatment of vertical shear Pauwel’s type C femoral neck fractures. Injury 2012; 43 (6): 802–6.
    1. Parker M. A new locking plate and dynamic screw sytem for internal fixation of intracapsular hip fractures; results for the first 200 patients treated. J Bone Joint Surg Br 2011; 93-B(SUPPII): 135.
    1. Parker M J, Handoll H H.. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev 2010; (9): CD000093.
    1. Pauwels F. Der Schenkelhalsbruch. Ein mechanisches Problem. Orthop Chir 1935; 63 (Beilagheft Z. Orthop. Chir. 63).
    1. Rogmark C, Johnell O.. Primary arthroplasty is better than internal fixation of displaced femoral neck fractures: a meta-analysis of 14 randomized studies with 2,289 patients. Acta Orthop 2006; 77 (3): 359–67.
    1. Saini P, Kumar R, Shekhawat V, Joshi N, Bansal M, Kumar S.. Biological fixation of comminuted subtrochanteric fractures with proximal femur locking compression plate. Injury 2013; 44 (2): 226–31.
    1. Schemitsch E H, Bhandari M, Boden S D, Bourne R B, Bozic K J, Jacobs J J, et al. . The evidence-based approach in bringing new orthopaedic devices to market. J Bone Joint Surg Am 2010; 92 (4): 1030–7.
    1. Schmidt A H. Locked plating for subtrochanteric fractures: The next big thing. Tech in Orthop 2008; 23 (2): 106–12.
    1. Seinsheimer F. Subtrochanteric fractures of the femur. J Bone Joint Surg Am 1978; 60 (3): 300–6.
    1. Sommer C, Gautier E, Muller M, Helfet D L, Wagner M.. First clinical results of the Locking Compression Plate (LCP). Injury 2003; 34Suppl2: B43–54.
    1. Streubel P N, Moustoukas M J, Obremskey W T.. Mechanical failure after locking plate fixation of unstable intertrochanteric femur fractures. J Orthop Trauma 2013; 27 (1): 22–8.
    1. Wagner M. General principles for the clinical use of the LCP. Injury 2003; 34Suppl2: B31–42.
    1. Wagner M, Frenk A, Frigg R.. New concepts for bone fracture treatment and the Locking Compression Plate. Surg Technol Int 2004; 12: 271–7.
    1. Wang J, Ma X L, Ma J X, Xing D, Yang Y, Zhu S W, et al. . Biomechanical analysis of four types of internal fixation in subtrochanteric fracture models. Orthop Surg 2014; 6 (2): 128–36.
    1. Wazen R M, Currey J A, Guo H, Brunski J B, Helms J A, Nanci A.. Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces. Acta Biomater 2013; 9 (5): 6663–74.
    1. Wieser K, Babst R.. Fixation failure of the LCP proximal femoral plate 4.5/5.0 in patients with missing posteromedial support in unstable per-, inter-, and subtrochanteric fractures of the proximal femur. Arch Orthop Trauma Surg 2010; 130 (10): 1281–7.
    1. Wirtz C, Abbassi F, Evangelopoulos D S, Kohl S, Siebenrock K A, Kruger A.. High failure rate of trochanteric fracture osteosynthesis with proximal femoral locking compression plate. Injury 2013; 44 (6): 751–6.
    1. Zha G C, Chen Z L, Qi X B, Sun J Y.. Treatment of pertrochanteric fractures with a proximal femur locking compression plate. Injury 2011; 42 (11): 1294–9.
    1. Zhong B, Zhang Y, Zhang C, Luo C F.. A comparison of proximal femoral locking compression plates with dynamic hip screws in extracapsular femoral fractures. Orthop Traumatol Surg Res 2014; 100 (6): 663–8.
    1. Zickel R E. An intramedullary fixation device for the proximal part of the femur. Nine years’ experience. J Bone Joint Surg Am 1976; 58 (6): 866–72.

Source: PubMed

3
Abonnieren