Familial Lung Cancer: A Brief History from the Earliest Work to the Most Recent Studies

Anthony M Musolf, Claire L Simpson, Mariza de Andrade, Diptasri Mandal, Colette Gaba, Ping Yang, Yafang Li, Ming You, Elena Y Kupert, Marshall W Anderson, Ann G Schwartz, Susan M Pinney, Christopher I Amos, Joan E Bailey-Wilson, Anthony M Musolf, Claire L Simpson, Mariza de Andrade, Diptasri Mandal, Colette Gaba, Ping Yang, Yafang Li, Ming You, Elena Y Kupert, Marshall W Anderson, Ann G Schwartz, Susan M Pinney, Christopher I Amos, Joan E Bailey-Wilson

Abstract

Lung cancer is the deadliest cancer in the United States, killing roughly one of four cancer patients in 2016. While it is well-established that lung cancer is caused primarily by environmental effects (particularly tobacco smoking), there is evidence for genetic susceptibility. Lung cancer has been shown to aggregate in families, and segregation analyses have hypothesized a major susceptibility locus for the disease. Genetic association studies have provided strong evidence for common risk variants of small-to-moderate effect. Rare and highly penetrant alleles have been identified by linkage studies, including on 6q23-25. Though not common, some germline mutations have also been identified via sequencing studies. Ongoing genomics studies aim to identify additional high penetrance germline susceptibility alleles for this deadly disease.

Keywords: family studies; linkage; lung cancer; major gene; susceptibility.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Beckett W.S. Epidemiology and etiology of lung cancer. Clin. Chest Med. 1993;14:1–15.
    1. Cancer Facts & Figures 2016. [(accessed on 12 September 2016)]. Available online: .
    1. Howlader N.N.A., Krapcho M., Miller D., Bishop K., Altekruse S.F., Kosary C.L., Yu M., Ruhl J., Tatalovich Z., Mariotto A., et al. Seer Cancer Statistics Review. National Cancer Institute; Bethesda, MD, USA: 1975–2013.
    1. National Lung Screening Trial Research Team. Aberle D.R., Adams A.M., Berg C.D., Black W.C., Clapp J.D., Fagerstrom R.M., Gareen I.F., Gatsonis C., Marcus P.M., et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011;365:395–409.
    1. Wender R., Fontham E.T., Barrera E., Jr., Colditz G.A., Church T.R., Ettinger D.S., Etzioni R., Flowers C.R., Gazelle G.S., Kelsey D.K., et al. American cancer society lung cancer screening guidelines. CA: Cancer J. Clin. 2013;63:107–117. doi: 10.3322/caac.21172.
    1. Zhang H. Osimertinib making a breakthrough in lung cancer targeted therapy. OncoTargets Ther. 2016;9:5489–5493. doi: 10.2147/OTT.S114722.
    1. Gridelli C., Peters S., Sgambato A., Casaluce F., Adjei A.A., Ciardiello F. ALK inhibitors in the treatment of advanced NSCLC. Cancer Treat. Rev. 2014;40:300–306. doi: 10.1016/j.ctrv.2013.07.002.
    1. Bowles D.W., Weickhardt A.J., Doebele R.C., Camidge D.R., Jimeno A. Crizotinib for the treatment of patients with advanced non-small cell lung cancer. Drugs Today. 2012;48:271–282. doi: 10.1358/dot.2012.48.4.1769835.
    1. Richer A.L., Friel J.M., Carson V.M., Inge L.J., Whitsett T.G. Genomic profiling toward precision medicine in non-small cell lung cancer: Getting beyond EGFR. Pharm. Pers. Med. 2015;8:63–79.
    1. Chong C.R., Janne P.A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med. 2013;19:1389–1400. doi: 10.1038/nm.3388.
    1. Tsuta K., Kohno T., Yoshida A., Shimada Y., Asamura H., Furuta K., Kushima R. Ret-rearranged non-small-cell lung carcinoma: A clinicopathological and molecular analysis. Br. J. Cancer. 2014;110:1571–1578. doi: 10.1038/bjc.2014.36.
    1. Xiao H.Q., Tian R.H., Zhang Z.H., Du K.Q., Ni Y.M. Efficacy of pemetrexed plus platinum doublet chemotherapy as first-line treatment for advanced nonsquamous non-small-cell-lung cancer: A systematic review and meta-analysis. OncoTargets Ther. 2016;9:1471–1476.
    1. Maione P., Sacco P.C., Casaluce F., Sgambato A., Santabarbara G., Rossi A., Gridelli C. Overcoming resistance to EGFR inhibitors in nsclc. Rev. Recent Clin. Trials. 2016;11:99–105. doi: 10.2174/1574887111666160330120431.
    1. Li Y., Qi K., Zu L., Wang M., Wang Y., Zhou Q. Anti-apoptotic brain and reproductive organ-expressed proteins enhance cisplatin resistance in lung cancer cells via the protein kinase B signaling pathway. Thorac. Cancer. 2016;7:190–198. doi: 10.1111/1759-7714.12313.
    1. Khagi Y., Kurzrock R., Patel S.P. Next generation predictive biomarkers for immune checkpoint inhibition. Cancer Metastasis Rev. 2016 doi: 10.1007/s10555-016-9652-y.
    1. Sacco P.C., Maione P., Guida C., Gridelli C. The combination of new immunotherapy and radiotherapy: A new potential treatment for locally advanced non-small cell lung cancer. Curr. Clin. Pharmacol. 2016 doi: 10.2174/1574884711666161201123439.
    1. Sgambato A., Casaluce F., Sacco P.C., Palazzolo G., Maione P., Rossi A., Ciardiello F., Gridelli C. Anti PD-1 and PDL-1 immunotherapy in the treatment of advanced non-small cell lung cancer (NSCLC): A review on toxicity profile and its management. Curr. Drug Saf. 2016;11:62–68. doi: 10.2174/1574886311207040289.
    1. Hatae R., Chamoto K. Immune checkpoint inhibitors targeting programmed cell death-1 (PD-1) in cancer therapy. Rinsho Ketsueki. 2016;57:2224–2231.
    1. Shukuya T., Mori K., Amann J.M., Bertino E.M., Otterson G.A., Shields P.G., Morita S., Carbone D.P. Relationship between overall survival and response or progression-free survival in advanced non-small cell lung cancer patients treated with Anti-PD-1/PD-L1 antibodies. J. Thorac. Oncol. 2016;11:1927–1939. doi: 10.1016/j.jtho.2016.07.017.
    1. Lee C.K., Man J., Lord S., Links M., Gebski V., Mok T., Yang J.C. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis. J. Thorac. Oncol. 2016 doi: 10.1016/j.jtho.2016.10.007.
    1. Doll R., Peto R. The causes of cancer: Quantitative estimates of avoidable risks of cancer in the united states today. J. Natl. Cancer Inst. 1981;66:1191–1308.
    1. Doll R., Peto R., Wheatley K., Gray R., Sutherland I. Mortality in relation to smoking: 40 years’ observations on male british doctors. BMJ. 1994;309:901–911. doi: 10.1136/bmj.309.6959.901.
    1. Carbone D. Smoking and cancer. Am. J. Med. 1992;93:13S–17S. doi: 10.1016/0002-9343(92)90621-H.
    1. Burch P.R. Smoking and lung cancer. Tests of a causal hypothesis. J. Chronic Dis. 1980;33:221–238. doi: 10.1016/0021-9681(80)90067-3.
    1. Morgan W.K., Seaton A. Occupational Lung Diseases. W.B. Saunders; Philadelphia, PA, USA: 1984.
    1. Min K.B., Min J.Y. Serum carotenoid levels and risk of lung cancer death in us adults. Cancer Sci. 2014;105:736–743. doi: 10.1111/cas.12405.
    1. Gallicchio L., Boyd K., Matanoski G., Tao X.G., Chen L., Lam T.K., Shiels M., Hammond E., Robinson K.A., Caulfield L.E., et al. Carotenoids and the risk of developing lung cancer: A systematic review. Am. J. Clin. Nutr. 2008;88:372–383.
    1. Vieira A.R., Abar L., Vingeliene S., Chan D.S., Aune D., Navarro-Rosenblatt D., Stevens C., Greenwood D., Norat T. Fruits, vegetables and lung cancer risk: A systematic review and meta-analysis. Ann. Oncol. 2016;27:81–96. doi: 10.1093/annonc/mdv381.
    1. Peto R., Darby S., Deo H., Silcocks P., Whitley E., Doll R. Smoking, smoking cessation, and lung cancer in the uk since 1950: Combination of national statistics with two case-control studies. BMJ. 2000;321:323–329. doi: 10.1136/bmj.321.7257.323.
    1. Flanders W.D., Lally C.A., Zhu B.P., Henley S.J., Thun M.J. Lung cancer mortality in relation to age, duration of smoking, and daily cigarette consumption: Results from cancer prevention study ii. Cancer Res. 2003;63:6556–6562.
    1. Mattson M.E., Pollack E.S., Cullen J.W. What are the odds that smoking will kill you? Am. J. Public Health. 1987;77:425–431. doi: 10.2105/AJPH.77.4.425.
    1. Wood D.E., Eapen G.A., Ettinger D.S., Hou L., Jackman D., Kazerooni E., Klippenstein D., Lackner R.P., Leard L., Leung A.N., et al. Lung cancer screening. J. Natl. Compr. Cancer Netw. 2012;10:240–265.
    1. Silverberg E. Cancer statistics, 1980. CA: Cancer J. Clin. 1980;30:23–38.
    1. Shopland D.R., Eyre H.J., Pechacek T.F. Smoking-attributable cancer mortality in 1991: Is lung cancer now the leading cause of death among smokers in the united states? J. Natl. Cancer Inst. 1991;83:1142–1148. doi: 10.1093/jnci/83.16.1142.
    1. The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General. [(accessed on 13 Spetember 2016)]; Available online: .
    1. Kondo K., Tsuzuki H., Sasa M., Sumitomo M., Uyama T., Monden Y. A dose-response relationship between the frequency of p53 mutations and tobacco consumption in lung cancer patients. J. Surg. Oncol. 1996;61:20–26. doi: 10.1002/(SICI)1096-9098(199601)61:1<20::AID-JSO6>;2-U.
    1. David S.P., Wang A., Kapphahn K., Hedlin H., Desai M., Henderson M., Yang L., Walsh K.M., Schwartz A.G., Wiencke J.K., et al. Gene by environment investigation of incident lung cancer risk in african-americans. EBioMedicine. 2016;4:153–161. doi: 10.1016/j.ebiom.2016.01.002.
    1. Zhang Y., Jiang M., Li Q., Liang W., He Q., Chen W., He J. Chromosome 15q25 (CHRNA3-CHRNB4) variation indirectly impacts lung cancer risk in chinese males. PLoS ONE. 2016;11:e0149946. doi: 10.1371/journal.pone.0149946.
    1. Kosaka T., Yatabe Y., Endoh H., Kuwano H., Takahashi T., Mitsudomi T. Mutations of the epidermal growth factor receptor gene in lung cancer: Biological and clinical implications. Cancer Res. 2004;64:8919–8923. doi: 10.1158/0008-5472.CAN-04-2818.
    1. Mitsudomi T. Molecular epidemiology of lung cancer and geographic variations with special reference to EGFR mutations. Transl. Lung Cancer Res. 2014;3:205–211.
    1. Amos C.I., Wu X., Broderick P., Gorlov I.P., Gu J., Eisen T., Dong Q., Zhang Q., Gu X., Vijayakrishnan J., et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat. Genet. 2008;40:616–622. doi: 10.1038/ng.109.
    1. Hung R.J., McKay J.D., Gaborieau V., Boffetta P., Hashibe M., Zaridze D., Mukeria A., Szeszenia-Dabrowska N., Lissowska J., Rudnai P., et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452:633–637. doi: 10.1038/nature06885.
    1. Thorgeirsson T.E., Geller F., Sulem P., Rafnar T., Wiste A., Magnusson K.P., Manolescu A., Thorleifsson G., Stefansson H., Ingason A., et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452:638–642. doi: 10.1038/nature06846.
    1. Mitchell P., Mok T., Barraclough H., Strizek A., Lew R., van Kooten M. Smoking history as a predictive factor of treatment response in advanced non-small-cell lung cancer: A systematic review. Clin. Lung Cancer. 2012;13:239–251. doi: 10.1016/j.cllc.2011.08.003.
    1. Stayner L., Bena J., Sasco A.J., Smith R., Steenland K., Kreuzer M., Straif K. Lung cancer risk and workplace exposure to environmental tobacco smoke. Am. J. Public Health. 2007;97:545–551. doi: 10.2105/AJPH.2004.061275.
    1. Jenks S. Is lung cancer incidence increasing in never-smokers? J. Natl. Cancer Inst. 2016;108 doi: 10.1093/jnci/djv418.
    1. Mitsudomi T., Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98:1817–1824. doi: 10.1111/j.1349-7006.2007.00607.x.
    1. Tokuhata G.K., Lilienfeld A.M. Familial aggregation of lung cancer in humans. J. Natl. Cancer Inst. 1963;30:289–312.
    1. Tokuhata G.K., Lilienfeld A.M. Familial aggregation of lung cancer among hospital patients. Public Health Rep. 1963;78:277–283. doi: 10.2307/4591778.
    1. Ooi W.L., Elston R.C., Chen V.W., Bailey-Wilson J.E., Rothschild H. Increased familial risk for lung cancer. J. Natl. Cancer Inst. 1986;76:217–222.
    1. McDuffie H.H. Clustering of cancer in families of patients with primary lung cancer. J. Clin. Epidemiol. 1991;44:69–76. doi: 10.1016/0895-4356(91)90202-K.
    1. Cannon-Albright L.A., Thomas A., Goldgar D.E., Gholami K., Rowe K., Jacobsen M., McWhorter W.P., Skolnick M.H. Familiality of cancer in utah. Cancer Res. 1994;54:2378–2385.
    1. Goldgar D.E., Easton D.F., Cannon-Albright L.A., Skolnick M.H. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J. Natl. Cancer Inst. 1994;86:1600–1608. doi: 10.1093/jnci/86.21.1600.
    1. Etzel C.J., Amos C.I., Spitz M.R. Risk for smoking-related cancer among relatives of lung cancer patients. Cancer Res. 2003;63:8531–8535.
    1. Cote M.L., Kardia S.L., Wenzlaff A.S., Ruckdeschel J.C., Schwartz A.G. Risk of lung cancer among white and black relatives of individuals with early-onset lung cancer. JAMA. 2005;293:3036–3042. doi: 10.1001/jama.293.24.3036.
    1. Jonsson S., Thorsteinsdottir U., Gudbjartsson D.F., Jonsson H.H., Kristjansson K., Arnason S., Gudnason V., Isaksson H.J., Hallgrimsson J., Gulcher J.R., et al. Familial risk of lung carcinoma in the icelandic population. JAMA. 2004;292:2977–2983. doi: 10.1001/jama.292.24.2977.
    1. Matakidou A., Eisen T., Houlston R.S. Systematic review of the relationship between family history and lung cancer risk. Br. J. Cancer. 2005;93:825–833. doi: 10.1038/sj.bjc.6602769.
    1. Cote M.L., Liu M., Bonassi S., Neri M., Schwartz A.G., Christiani D.C., Spitz M.R., Muscat J.E., Rennert G., Aben K.K., et al. Increased risk of lung cancer in individuals with a family history of the disease: A pooled analysis from the international lung cancer consortium. Eur. J. Cancer. 2012;48:1957–1968. doi: 10.1016/j.ejca.2012.01.038.
    1. Schwartz A.G., Yang P., Swanson G.M. Familial risk of lung cancer among nonsmokers and their relatives. Am. J. Epidemiol. 1996;144:554–562. doi: 10.1093/oxfordjournals.aje.a008965.
    1. Mayne S.T., Buenconsejo J., Janerich D.T. Familial cancer history and lung cancer risk in united states nonsmoking men and women. Am. Assoc. Cancer Res. 1999;8:1065–1069.
    1. Sellers T.A., Bailey-Wilson J.E., Elston R.C., Wilson A.F., Elston G.Z., Ooi W.L., Rothschild H. Evidence for mendelian inheritance in the pathogenesis of lung cancer. J. Natl. Cancer Inst. 1990;82:1272–1279. doi: 10.1093/jnci/82.15.1272.
    1. Bailey-Wilson J.E., Sellers T.A., Elston R.C., Evens C.C., Rothschild H. Evidence for a major gene effect in early-onset lung cancer. J. La. State Med. Soc. 1993;145:157–162.
    1. Sellers T.A., Bailey-Wilson J.E., Potter J.D., Rich S.S., Rothschild H., Elston R.C. Effect of cohort differences in smoking prevalence on models of lung cancer susceptibility. Genet. Epidemiol. 1992;9:261–271. doi: 10.1002/gepi.1370090405.
    1. Sellers T.A., Potter J.D., Bailey-Wilson J.E., Rich S.S., Rothschild H., Elston R.C. Lung cancer detection and prevention: Evidence for an interaction between smoking and genetic predisposition. Cancer Res. 1992;52:2694s–2697s.
    1. Gauderman W.J., Morrison J.L., Carpenter C.L., Thomas D.C. Analysis of gene-smoking interaction in lung cancer. Genet. Epidemiol. 1997;14:199–214. doi: 10.1002/(SICI)1098-2272(1997)14:2<199::AID-GEPI8>;2-2.
    1. Yang P., Schwartz A.G., McAllister A.E., Swanson G.M., Aston C.E. Lung cancer risk in families of nonsmoking probands: Heterogeneity by age at diagnosis. Genet. Epidemiol. 1999;17:253–273. doi: 10.1002/(SICI)1098-2272(199911)17:4<253::AID-GEPI2>;2-K.
    1. Wu P.F., Lee C.H., Wang M.J., Goggins W.B., Chiang T.A., Huang M.S., Ko Y.C. Cancer aggregation and complex segregation analysis of families with female non-smoking lung cancer probands in taiwan. Eur. J. Cancer. 2004;40:260–266. doi: 10.1016/j.ejca.2003.08.021.
    1. Broderick P., Wang Y., Vijayakrishnan J., Matakidou A., Spitz M.R., Eisen T., Amos C.I., Houlston R.S. Deciphering the impact of common genetic variation on lung cancer risk: A genome-wide association study. Cancer Res. 2009;69:6633–6641. doi: 10.1158/0008-5472.CAN-09-0680.
    1. Wang Y., Broderick P., Webb E., Wu X., Vijayakrishnan J., Matakidou A., Qureshi M., Dong Q., Gu X., Chen W.V., et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat. Genet. 2008;40:1407–1409. doi: 10.1038/ng.273.
    1. Timofeeva M.N., Hung R.J., Rafnar T., Christiani D.C., Field J.K., Bickeboller H., Risch A., McKay J.D., Wang Y., Dai J., et al. Influence of common genetic variation on lung cancer risk: Meta-analysis of 14 900 cases and 29 485 controls. Hum. Mol. Genet. 2012;21:4980–4995. doi: 10.1093/hmg/dds334.
    1. Timofeeva M.N., McKay J.D., Smith G.D., Johansson M., Byrnes G.B., Chabrier A., Relton C., Ueland P.M., Vollset S.E., Midttun O., et al. Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels, and risk of lung cancer in EPIC. Cancer Epidemiol. Biomark. Prev. 2011;20:2250–2261. doi: 10.1158/1055-9965.EPI-11-0496.
    1. Saccone N.L., Wang J.C., Breslau N., Johnson E.O., Hatsukami D., Saccone S.F., Grucza R.A., Sun L., Duan W., Budde J., et al. The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res. 2009;69:6848–6856. doi: 10.1158/0008-5472.CAN-09-0786.
    1. Hu Z., Wu C., Shi Y., Guo H., Zhao X., Yin Z., Yang L., Dai J., Hu L., Tan W., et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat. Genet. 2011;43:792–796. doi: 10.1038/ng.875.
    1. Dong J., Hu Z., Wu C., Guo H., Zhou B., Lv J., Lu D., Chen K., Shi Y., Chu M., et al. Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population. Nat. Genet. 2012;44:895–899. doi: 10.1038/ng.2351.
    1. Shiraishi K., Kunitoh H., Daigo Y., Takahashi A., Goto K., Sakamoto H., Ohnami S., Shimada Y., Ashikawa K., Saito A., et al. A genome-wide association study identifies two new susceptibility loci for lung adenocarcinoma in the Japanese population. Nat. Genet. 2012;44:900–903. doi: 10.1038/ng.2353.
    1. Qian D.C., Han Y.H., Byun J.Y., Shin H.R., Hung R.J., McLaughlin J.R., Landi M.T., Seminara D., Amos C.I. A novel pathway-based approach improves lung cancer risk prediction using germline genetic variations. Cancer Epidem Biomark. 2016;25:1208–1215. doi: 10.1158/1055-9965.EPI-15-1318.
    1. Qian D.C., Byun J.Y., Han Y.H., Greene C.S., Field J.K., Hung R.J., Brhane Y., Mclaughlin J.R., Fehringer G., Landi M.T., et al. Identification of shared and unique susceptibility pathways among cancers of the lung, breast, and prostate from genome-wide association studies and tissue-specific protein interactions. Hum. Mol. Genet. 2015;24:7406–7420. doi: 10.1093/hmg/ddv440.
    1. Bailey-Wilson J.E., Amos C.I., Pinney S.M., Petersen G.M., de Andrade M., Wiest J.S., Fain P., Schwartz A.G., You M., Franklin W., et al. A major lung cancer susceptibility locus maps to chromosome 6q23-25. Am. J. Hum. Genet. 2004;75:460–474. doi: 10.1086/423857.
    1. Lander E., Kruglyak L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 1995;11:241–247. doi: 10.1038/ng1195-241.
    1. Ott J. Analysis of Human Genetic Linkage. Johns Hopkins University Press; Baltimore, MD, USA: 1985.
    1. Amos C.I., Pinney S.M., Li Y., Kupert E., Lee J., de Andrade M.A., Yang P., Schwartz A.G., Fain P.R., Gazdar A., et al. A susceptibility locus on chromosome 6q greatly increases lung cancer risk among light and never smokers. Cancer Res. 2010;70:2359–2367. doi: 10.1158/0008-5472.CAN-09-3096.
    1. Park K.J., Choi H.J., Suh S.P., Ki C.S., Kim J.W. Germline TP53 mutation and clinical characteristics of Korean patients with Li-Fraumeni syndrome. Ann. Lab. Med. 2016;36:463–468. doi: 10.3343/alm.2016.36.5.463.
    1. Zhuang X., Li Y., Cao H., Wang T., Chen J., Liu J., Lin L., Ye R., Li X., Liu S., et al. Case report of a Li-Fraumeni syndrome-like phenotype with a de novo mutation in CHEK2. Medicine. 2016 doi: 10.1097/MD.0000000000004251.
    1. De Kock L., Bah I., Wu Y., Xie M., Priest J.R., Foulkes W.D. Germline and somatic DICER1 mutations in a well-differentiated fetal adenocarcinoma of the lung. J. Thorac. Oncol. 2016;11:e31–e33. doi: 10.1016/j.jtho.2015.09.012.
    1. Nathan N., Giraud V., Picard C., Nunes H., Dastot-Le Moal F., Copin B., Galeron L., De Ligniville A., Kuziner N., Reynaud-Gaubert M., et al. Germline SFTPA1 mutation in familial idiopathic interstitial pneumonia and lung cancer. Hum. Mol. Genet. 2016;25:1457–1467. doi: 10.1093/hmg/ddw014.
    1. Bell D.W., Gore I., Okimoto R.A., Godin-Heymann N., Sordella R., Mulloy R., Sharma S.V., Brannigan B.W., Mohapatra G., Settleman J., et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in egfr. Nat. Genet. 2005;37:1315–1316. doi: 10.1038/ng1671.
    1. Thomas A., Xi L.Q., Carter C.A., Rajan A., Khozin S., Szabo E., Dennis P.A., Giaccone G., Raffeld M. Concurrent molecular alterations in tumors with germ line epidermal growth factor receptor T790M mutations. Clin. Lung Cancer. 2013;14:452–456. doi: 10.1016/j.cllc.2013.01.005.
    1. Lou Y., Pecot C.V., Tran H.T., DeVito V.J., Tang X.M., Heymach J.V., Luthra R., Wistuba I.I., Zuo Z., Tsao A.S. Germline mutation of T790M and dual/multiple EGFR mutations in patients with lung adenocarcinoma. Clin. Lung Cancer. 2016;17:e5–e11. doi: 10.1016/j.cllc.2015.11.003.
    1. Yu H.A., Arcila M.E., Fleischut M.H., Stadler Z., Ladanyi M., Berger M.F., Robson M., Riely G.J. Germline EGFR T790M mutation found in multiple members of a familial cohort. J. Thorac. Oncol. 2014;9:554–558. doi: 10.1097/JTO.0000000000000052.
    1. Gazdar A., Robinson L., Oliver D., Xing C., Travis W.D., Soh J., Toyooka S., Watumull L., Xie Y., Kernstine K., et al. Hereditary lung cancer syndrome targets never smokers with germline EGFR gene T790M mutations. J. Thorac. Oncol. 2014;9:456–463. doi: 10.1097/JTO.0000000000000130.
    1. Yamamoto H., Higasa K., Sakaguchi M., Shien K., Soh J., Ichimura K., Furukawa M., Hashida S., Tsukuda K., Takigawa N., et al. Novel germline mutation in the transmembrane domain of HER2 in familial lung adenocarcinomas. J. Natl. Cancer Inst. 2014 doi: 10.1093/jnci/djt338.
    1. Abdel-Rahman M.H., Pilarski R., Cebulla C.M., Massengill J.B., Christopher B.N., Boru G., Hovland P., Davidorf F.H. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J. Med. Genet. 2011;48:856–859. doi: 10.1136/jmedgenet-2011-100156.
    1. Xiong D., Wang Y., Kupert E., Simpson C., Pinney S.M., Gaba C.R., Mandal D., Schwartz A.G., Yang P., de Andrade M., et al. A recurrent mutation in PARK2 is associated with familial lung cancer. Am. J. Hum. Genet. 2015;96:301–308. doi: 10.1016/j.ajhg.2014.12.016.
    1. You M., Wang D.L., Liu P.Y., Vikis H., James M., Lu Y., Wang Y., Wang M., Chen Q.O., Jia D.M., et al. Fine mapping of chromosome 6q23-25 region in familial lung cancer families reveals RGS17 as a likely candidate gene. Clin. Cancer Res. 2009;15:2666–2674. doi: 10.1158/1078-0432.CCR-08-2335.
    1. U.S. Government Clinical Trials Website. [(accessed on 21 December 2016)]; Available online: .

Source: PubMed

3
Abonnieren