Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes

Jens Markus Borghardt, Charlotte Kloft, Ashish Sharma, Jens Markus Borghardt, Charlotte Kloft, Ashish Sharma

Abstract

The inhalation route is frequently used to administer drugs for the management of respiratory diseases such as asthma or chronic obstructive pulmonary disease. Compared with other routes of administration, inhalation offers a number of advantages in the treatment of these diseases. For example, via inhalation, a drug is directly delivered to the target organ, conferring high pulmonary drug concentrations and low systemic drug concentrations. Therefore, drug inhalation is typically associated with high pulmonary efficacy and minimal systemic side effects. The lung, as a target, represents an organ with a complex structure and multiple pulmonary-specific pharmacokinetic processes, including (1) drug particle/droplet deposition; (2) pulmonary drug dissolution; (3) mucociliary and macrophage clearance; (4) absorption to lung tissue; (5) pulmonary tissue retention and tissue metabolism; and (6) absorptive drug clearance to the systemic perfusion. In this review, we describe these pharmacokinetic processes and explain how they may be influenced by drug-, formulation- and device-, and patient-related factors. Furthermore, we highlight the complex interplay between these processes and describe, using the examples of inhaled albuterol, fluticasone propionate, budesonide, and olodaterol, how various sequential or parallel pulmonary processes should be considered in order to comprehend the pulmonary fate of inhaled drugs.

Figures

Figure 1
Figure 1
Summary of the lung-specific PK processes for inhaled drugs. Overview of the pulmonary-specific kinetic processes (1–6). The direction of the arrows indicates the direction of each process. For example, drug dissolution is considered to be a unidirectional process.
Figure 2
Figure 2
Schematic overview of the interplay of device and formulation, drug, and patient characteristics. The overlapping areas represent processes or parameters that are influenced or determined by the drug, the formulation/device, or the patient characteristics.
Figure 3
Figure 3
Particle size determines location of drug deposition. Aerodynamic particle size determines deposition patterns across the human respiratory tract. Simulations were performed using Multiple-Path Particle Dosimetry software [95]. Each simulated particle size represents one simulation. The Yeh/Schum five-lobe model [96] with uniform expansion was applied. The inhalation characteristics used for the simulation were an inhaled volume of 2 L, an inhalation flow rate of 60 L/min, and a breath-holding time of 8 seconds. These simulations do not account for the influence of an inhalation device on deposition.
Figure 4
Figure 4
Summary of pulmonary absorption kinetics based on local physiologic characteristics of respiratory tract regions.
Figure 5
Figure 5
Inhaled drug particle deposition in healthy versus diseased lungs. Reproduced with permission from Wang et al. [23].

References

    1. Crompton G. A brief history of inhaled asthma therapy over the last fifty years. Primary Care Respiratory Journal. 2006;15(6):326–331.
    1. Lavorini F., Mannini C., Chellini E. Challenges of inhaler use in the treatment of asthma and chronic obstructive pulmonary disease. EMJ Respiratory. 2015;3:98–105.
    1. Global Initiative for Asthma. GINA Report: Global Strategy for Asthma Management and Prevention. 2017.
    1. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2017.
    1. Henry R. R., Mudaliar S. R., Howland W. C., et al. Inhaled insulin using the AERx insulin diabetes management system in healthy and asthmatic subjects. Diabetes Care. 2003;26(3):764–769. doi: 10.2337/diacare.26.3.764.
    1. Sakagami M. Insulin disposition in the lung following oral inhalation in humans: a meta-analysis of its pharmacokinetics. Clinical Pharmacokinectics. 2004;43(8):539–552. doi: 10.2165/00003088-200443080-00004.
    1. Wright J., Brocklebank D., Ram F. Inhaler devices for the treatment of asthma and chronic obstructive airways disease (COPD) Quality and Safety in Health Care. 2002;11(4):376–382. doi: 10.1136/qhc.11.4.376.
    1. Mash B., Bheekie A., Jones P. W. Inhaled vs oral steroids for adults with chronic asthma. Cochrane Database of Systematic Reviews. 2001;1(1):p. CD002160.
    1. Walker S. R., Evans M. E., Richards A. J., Paterson J. W. The clinical pharmacology of oral and inhaled salbutamol. Clinical Pharmacology and Therapeutics. 1972;13(6):861–867. doi: 10.1002/cpt1972136861.
    1. Labiris N. R., Dolovich M. B. Pulmonary drug delivery. part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. British Journal of Clinical Pharmacology. 2003;56(6):588–599. doi: 10.1046/j.1365-2125.2003.01892.x.
    1. Webb J., Rees J., Clark T. J. A comparison of the effects of different methods of administration of beta-2-sympathomimetics in patients with asthma. British Journal of Diseases of the Chest. 1982;76(4):351–357. doi: 10.1016/0007-0971(82)90069-9.
    1. van Noord J. A., Smeets J. J., Maesen F. P. A comparison of the onset of action of salbutamol and formoterol in reversing methacholine-induced bronchoconstriction. Respiratory Medicine. 1998;92(12):1346–1351. doi: 10.1016/s0954-6111(98)90140-8.
    1. Palmqvist M., Persson G., Lazer L., et al. Inhaled dry-powder formoterol and salmeterol in asthmatic patients: onset of action, duration of effect and potency. European Respiratory Journal. 1997;10(11):2484–2489.
    1. Itoh H., Nishino M., Hatabu H. Architecture of the lung: morphology and function. Journal of Thoracic Imaging. 2004;19(4):221–227. doi: 10.1097/01.rti.0000142835.06988.b0.
    1. Herriges M., Morrisey E. E. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014;141(3):502–513. doi: 10.1242/dev.098186.
    1. Weber B., Hochhaus G. A pharmacokinetic simulation tool for inhaled corticosteroids. AAPS Journal. 2013;15(1):159–171. doi: 10.1208/s12248-012-9420-z.
    1. Ibrahim M., Verma R., Garcia-Contreras L. Inhalation drug delivery devices: technology update. Medical Devices. 2015;8:131–139.
    1. Zhao Y. H., Abraham M. H., Le J., et al. Rate-limited steps of human oral absorption and QSAR studies. Pharmaceutical Research. 2002;19(10):1446–1457. doi: 10.1023/a:1020444330011.
    1. Jin J. F., Zhu L. L., Chen M., et al. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Preference and Adherence. 2015;9:923–942. doi: 10.2147/ppa.s87271.
    1. Jones H. M., Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT: Pharmacometrics and Systems Pharmacology. 2013;2(8):p. e63. doi: 10.1038/psp.2013.41.
    1. Tsuda A., Henry F. S., Butler J. P. Particle transport and deposition: basic physics of particle kinetics. Comprehensive Physiology. 2013;3(4):1437–1471. doi: 10.1002/cphy.c100085.
    1. Thorsson L., Geller D. Factors guiding the choice of delivery device for inhaled corticosteroids in the long-term management of stable asthma and COPD: focus on budesonide. Respiratory Medicine. 2005;99(7):836–849. doi: 10.1016/j.rmed.2005.02.012.
    1. Wang Y. B., Watts A. B., Peters J. I., Williams R. O. The impact of pulmonary diseases on the fate of inhaled medicines–a review. International Journal of Pharmaceutics. 2014;461(1-2):112–128. doi: 10.1016/j.ijpharm.2013.11.042.
    1. Chrystyn H. Methods to identify drug deposition in the lungs following inhalation. British Journal of Clinical Pharmacology. 2001;51(4):289–299.
    1. Borghardt J. M., Weber B., Staab A., Kloft C. Pharmacometric models for characterizing the pharmacokinetics of orally inhaled drugs. AAPS Journal. 2015;17(4):853–870. doi: 10.1208/s12248-015-9760-6.
    1. Edsbacker S., Johansson C. J. Airway selectivity: an update of pharmacokinetic factors affecting local and systemic disposition of inhaled steroids. Basic and Clinical Pharmacology and Toxicology. 2006;98(6):523–536. doi: 10.1111/j.1742-7843.2006.pto_355.x.
    1. Sheth P., Stein S. W., Myrdal P. B. Factors influencing aerodynamic particle size distribution of suspension pressurized metered dose inhalers. AAPS PharmSciTech. 2015;16(1):192–201. doi: 10.1208/s12249-014-0210-z.
    1. Bonini M., Usmani O. S. The importance of inhaler devices in the treatment of COPD. COPD Research and Practice. 2015;1:p. 9. doi: 10.1186/s40749-015-0011-0.
    1. Thompson P. J. Drug delivery to the small airways. American Journal of Respiratory and Critical Care Medicine. 1998;157(5):S199–S202. doi: 10.1164/ajrccm.157.5.rsaa-7.
    1. Labiris N. R., Dolovich M. B. Pulmonary drug delivery. part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. British Journal of Clinical Pharmacology. 2003;56(6):600–612. doi: 10.1046/j.1365-2125.2003.01893.x.
    1. Dal Negro R. W. Dry powder inhalers and the right things to remember: a concept review. Multidisciplinary Respiratory Medicine. 2015;10(1):p. 13. doi: 10.1186/s40248-015-0012-5.
    1. Zierenberg B. Optimizing the in vitro performance of Respimat. Journal of Aerosol Medicine. 1999;12(1):S19–S24. doi: 10.1089/jam.1999.12.suppl_1.s-19.
    1. Brand P., Hederer B., Austen G., et al. Higher lung deposition with Respimat Soft Mist inhaler than HFA-MDI in COPD patients with poor technique. International Journal of Chronic Obstructive Pulmonary Disease. 2008;3(4):763–770.
    1. Ng A. W., Bidani A., Heming T. A. Innate host defense of the lung: effects of lung-lining fluid pH. Lung. 2004;182(5):297–317. doi: 10.1007/s00408-004-2511-6.
    1. Frohlich E., Mercuri A., Wu S., Salar-Behzadi S. Measurements of deposition, lung surface area and lung fluid for simulation of inhaled compounds. Frontiers in Pharmacology. 2016;7:p. 181. doi: 10.3389/fphar.2016.00181.
    1. Lai S. K., Wang Y. Y., Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Advanced Drug Delivery Reviews. 2009;61(2):158–171. doi: 10.1016/j.addr.2008.11.002.
    1. Akella A., Deshpande S. B. Pulmonary surfactants and their role in pathophysiology of lung disorders. Indian Journal of Experimental Biology. 2013;51(1):5–22.
    1. Daley-Yates P. T. Inhaled corticosteroids: potency, dose equivalence and therapeutic index. British Journal of Clinical Pharmacology. 2015;80(3):372–380. doi: 10.1111/bcp.12637.
    1. Johnson M. Pharmacodynamics and pharmacokinetics of inhaled glucocorticoids. Journal of Allergy and Clinical Immunology. 1996;97(1):169–176. doi: 10.1016/s0091-6749(96)80217-x.
    1. Hogger P., Rawert L., Rohdewald P. Dissolution tissue binding and kinetics of receptor binding of inhaled glucocorticoidsn [abstract P1864] European Respiratory Journal. 1993;6:p. 584S.
    1. Yalkowski S. H., He Y., Jain P. Handbook of Aqueous Solubility Data. Oxford, UK: Taylor & Francis Inc.; 2010.
    1. Wanner A., Salathe M., O’Riordan T. G. Mucociliary clearance in the airways. American Journal of Respiratory and Critical Care Medicine. 1996;154(6):1868–1902. doi: 10.1164/ajrccm.154.6.8970383.
    1. Foster W. M., Langenback E., Bergofsky E. H. Measurement of tracheal and bronchial mucus velocities in man: relation to lung clearance. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology. 1980;48(6):965–971. doi: 10.1152/jappl.1980.48.6.965.
    1. Rogers F. G. Airway mucus hypersecretion in asthma and COPD: not the same? In: Barnes P. J., Drazen J. M., Rennard S. I., et al., editors. Asthma and COPD: Basic Mechanisms and Clinical Management. 2nd. San Diego, CA, USA: Elsevier; 2009. pp. 211–224.
    1. Kim W. D. Lung mucus: a clinician’s view. European Respiratory Journal. 1997;10(8):1914–1917. doi: 10.1183/09031936.97.10081914.
    1. Forbes B., O’Lone R., Allen P. P., et al. Challenges for inhaled drug discovery and development: induced alveolar macrophage responses. Advanced Drug Delivery Reviews. 2014;71:15–33. doi: 10.1016/j.addr.2014.02.001.
    1. Kirby A. C., Coles M. C., Kaye P. M. Alveolar macrophages transport pathogens to lung draining lymph nodes. Journal of Immunology. 2009;183(3):1983–1989. doi: 10.4049/jimmunol.0901089.
    1. Camberlein E., Cohen J. M., Jose R., et al. Importance of bacterial replication and alveolar macrophage-independent clearance mechanisms during early lung infection with streptococcus pneumoniae. Infection and Immunity. 2015;83(3):1181–1189. doi: 10.1128/iai.02788-14.
    1. International Commission on Radiological Protection. ICRP publication 66 human respiratory tract model for radiological protection. Annals of the ICRP. 1994;24(1–3):1–482.
    1. Cuddihy R. G., Fisher G. L., Kanapilly G. M., et al. NCRP report no. 125-deposition, retention and dosimetry of inhaled radioactive substances. Environment International. 1997;23(5):p. 748. doi: 10.1016/s0160-4120(97)85689-9.
    1. Patton J. S. Mechanisms of macromolecule absorption by the lungs. Advanced Drug Delivery Reviews. 1996;19(1):3–36. doi: 10.1016/0169-409x(95)00113-l.
    1. Patton J. S., Fishburn C. S., Weers J. G. The lungs as a portal of entry for systemic drug delivery. Proceedings of the American Thoracic Society. 2004;1(4):338–344. doi: 10.1513/pats.200409-049ta.
    1. Olsson B., Bondesson E., Borgstrom L., et al. Pulmonary drug metabolism, clearance, and absorption. In: Smyth H., Hickey A., editors. Controlled Pulmonary Drug Delivery. New York, NY, USA: Springer; 2011. pp. 21–50.
    1. Patton J. S., Byron P. R. Inhaling medicines: delivering drugs to the body through the lungs. Nature Reviews Drug Discovery. 2007;6(1):67–74. doi: 10.1038/nrd2153.
    1. Ruge C. A., Kirch J., Lehr C. M. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. Lancet Respiratory Medicine. 2013;1(5):402–413. doi: 10.1016/s2213-2600(13)70072-9.
    1. Schanker L. S., Mitchell E. W., Brown R. A. Species comparison of drug absorption from the lung after aerosol inhalation or intratracheal injection. Drug Metabolism and Disposition: The Biological Fate of Chemicals. 1986;14(1):79–88.
    1. Backstrom E., Lundqvist A., Boger E., et al. Development of a novel lung slice methodology for profiling of inhaled compounds. Journal of Pharmaceutical Sciences. 2016;105(2):838–845. doi: 10.1002/jps.24575.
    1. Bäckström E., Boger E., Lundqvist A., et al. Lung retention by lysosomal trapping of inhaled drugs can be predicted in vitro with lung slices. Journal of Pharmaceutical Sciences. 2016;105(11):3432–3439. doi: 10.1016/j.xphs.2016.08.014.
    1. MacIntyre A. C., Cutler D. J. The potential role of lysosomes in tissue distribution of weak bases. Biopharmaceutics and Drug Disposition. 1988;9(6):513–526. doi: 10.1002/bod.2510090602.
    1. Borghardt J. M., Weber B., Staab A., et al. Investigating pulmonary and systemic pharmacokinetics of inhaled olodaterol in healthy volunteers using a population pharmacokinetic approach. British Journal of Clinical Pharmacology. 2016;81(3):538–552. doi: 10.1111/bcp.12780.
    1. Bartels C., Looby M., Sechaud R., Kaiser G. Determination of the pharmacokinetics of glycopyrronium in the lung using a population pharmacokinetic modelling approach. British Journal of Clinical Pharmacology. 2013;76(6):868–879. doi: 10.1111/bcp.12118.
    1. Weber B., Troconiz I. F., Borghardt A., Staab A., Sharma A., et al. Model-based evaluation of single and multiple dose pharmacokinetics of inhaled tiotropium in healthy volunteers and implications for systemic exposure studies. In: Dalby R. N., Byron P. R., Young P. M., et al., editors. Respiratory Drug Delivery (RDD) Europe 2015. Vol. 2. LLC, Nice, France: Davis Healthcare International Publishing; 2015. pp. 249–253.
    1. Vauquelin G., Charlton S. J. Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. British Journal of Pharmacology. 2010;161(3):488–508. doi: 10.1111/j.1476-5381.2010.00936.x.
    1. Casarosa P., Kollak I., Kiechle T., et al. Functional and biochemical rationales for the 24-hour-long duration of action of olodaterol. Journal of Pharmacology and Experimental Therapeutics. 2011;337(3):600–609. doi: 10.1124/jpet.111.179259.
    1. Jendbro M., Johansson C. J., Strandberg P., et al. Pharmacokinetics of budesonide and its major ester metabolite after inhalation and intravenous administration of budesonide in the rat. Drug Metabolism and Disposition. 2001;29(5):769–776.
    1. Anderson G. P., Linden A., Rabe K. F. Why are long-acting beta-adrenoceptor agonists long-acting? European Respiratory Journal. 1994;7(3):569–578. doi: 10.1183/09031936.94.07030569.
    1. Anttila S., Hukkanen J., Hakkola J., et al. Expression and localization of CYP3A4 and CYP3A5 in human lung. American Journal of Respiratory Cell and Molecular Biology. 1997;16(3):242–249. doi: 10.1165/ajrcmb.16.3.9070608.
    1. Hukkanen J., Pelkonen O., Hakkola J., Raunio H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Critical Reviews in Toxicology. 2002;32(5):391–411. doi: 10.1080/20024091064273.
    1. Anttila S., Hietanen E., Vainio H., et al. Smoking and peripheral type of cancer are related to high levels of pulmonary cytochrome P450IA in lung cancer patients. International Journal of Cancer. 1991;47(5):681–685. doi: 10.1002/ijc.2910470509.
    1. Omiecinski C. J., Redlich C. A., Costa P. Induction and developmental expression of cytochrome P450IA1 messenger RNA in rat and human tissues: detection by the polymerase chain reaction. Cancer Research. 1990;50(14):4315–4321.
    1. Shimada T., Yamazaki H., Mimura M., et al. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metabolism and Disposition: The Biological Fate of Chemicals. 1996;24(5):515–522.
    1. Brown R. P., Delp M. D., Lindstedt S. L., et al. Physiological parameter values for physiologically based pharmacokinetic models. Toxicology and Industrial Health. 1997;13(4):407–484. doi: 10.1177/074823379701300401.
    1. Boger E., Evans N., Chappell M., et al. Systems pharmacology approach for prediction of pulmonary and systemic pharmacokinetics and receptor occupancy of inhaled drugs. CPT: Pharmacometrics and Systems Pharmacology. 2016;5(4):201–210. doi: 10.1002/psp4.12074.
    1. Backstrom E., Hamm G., Nilsson A., et al. Uncovering the regional localization of inhaled salmeterol retention in the lung. Drug Delivery. 2018;25(1):838–845. doi: 10.1080/10717544.2018.1455762.
    1. Brown R. A., Schanker L. S. Absorption of aerosolized drugs from the rat lung. Drug Metabolism and Disposition: The Biological Fate of Chemicals. 1983;11(4):355–360.
    1. Tayab Z. R., Hochhaus G. Pharmacokinetic/pharmacodynamic evaluation of inhalation drugs: application to targeted pulmonary delivery systems. Expert Opinion on Drug Delivery. 2005;2(3):519–532. doi: 10.1517/17425247.2.3.519.
    1. Hochhaus G., Mollmann H., Derendorf H., Gonzalez-Rothi R. J. Pharmacokinetic/pharmacodynamic aspects of aerosol therapy using glucocorticoids as a model. Journal of Clinical Pharmacology. 1997;37(10):881–892. doi: 10.1002/j.1552-4604.1997.tb04262.x.
    1. Colice G. L. Pharmacodynamic and pharmacokinetic considerations in choosing an inhaled corticosteroid. Treatments in Respiratory Medicine. 2006;5(4):245–253. doi: 10.2165/00151829-200605040-00003.
    1. Scichilone N., Benfante A., Bocchino M., et al. Which factors affect the choice of the inhaler in chronic obstructive respiratory diseases? Pulmonary Pharmacology and Therapeutics. 2015;31:63–67. doi: 10.1016/j.pupt.2015.02.006.
    1. Backman P., Arora S., Couet W., et al. Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs. European Journal of Pharmaceutical Sciences. 2018;113:41–52. doi: 10.1016/j.ejps.2017.10.030.
    1. Usmani O. S., Biddiscombe M. F., Nightingale J. A., et al. Effects of bronchodilator particle size in asthmatic patients using monodisperse aerosols. Journal of Applied Physiology. 2003;95(5):2106–2112. doi: 10.1152/japplphysiol.00525.2003.
    1. Harrison T. W., Wisniewski A., Honour J., Tattersfield A. E. Comparison of the systemic effects of fluticasone propionate and budesonide given by dry powder inhaler in healthy and asthmatic subjects. Thorax. 2001;56(3):186–191. doi: 10.1136/thorax.56.3.186.
    1. Harrison T. W., Tattersfield A. E. Plasma concentrations of fluticasone propionate and budesonide following inhalation from dry powder inhalers by healthy and asthmatic subjects. Thorax. 2003;58(3):258–260. doi: 10.1136/thorax.58.3.258.
    1. Singh S. D., Whale C., Houghton N., et al. Pharmacokinetic and systemic effects of inhaled fluticasone propionate in chronic obstructive pulmonary disease. British Journal of Clinical Pharmacology. 2003;55(4):375–381. doi: 10.1046/j.1365-2125.2003.01758.x.
    1. Borghardt J. M., Weber B., Staab A., et al. Model-based evaluation of pulmonary pharmacokinetics in asthmatic and COPD patients after oral olodaterol inhalation. British Journal of Clinical Pharmacology. 2016;82(3):739–753. doi: 10.1111/bcp.12999.
    1. Melin J., Prothon S., Kloft C., et al. Pharmacokinetics of the inhaled selective glucocorticoid receptor modulator AZD5423 following inhalation using different devices. AAPS Journal. 2017;19(3):865–874. doi: 10.1208/s12248-016-0042-8.
    1. Usmani O. S., Biddiscombe M. F., Barnes P. J. Regional lung deposition and bronchodilator response as a function of beta2-agonist particle size. American Journal of Respiratory and Critical Care Medicine. 2005;172(12):1497–1504. doi: 10.1164/rccm.200410-1414oc.
    1. Usmani O. S., Biddiscombe M. F., Yang S., et al. The topical study of inhaled drug (salbutamol) delivery in idiopathic pulmonary fibrosis. Respiratory Research. 2018;19(1):p. 25. doi: 10.1186/s12931-018-0732-0.
    1. Darquenne C. Aerosol deposition in health and disease. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2012;25(3):140–147. doi: 10.1089/jamp.2011.0916.
    1. Schuh S., Reisman J., Alshehri M., et al. A comparison of inhaled fluticasone and oral prednisone for children with severe acute asthma. New England Journal of Medicine. 2000;343(10):689–694. doi: 10.1056/nejm200009073431003.
    1. Houtmeyers E., Gosselink R., Gayan-Ramirez G., Decramer M. Regulation of mucociliary clearance in health and disease. European Respiratory Journal. 1999;13(5):1177–1188. doi: 10.1034/j.1399-3003.1999.13e39.x.
    1. Brand P., Meyer T., Weuthen T., et al. Lung deposition of radiolabeled tiotropium in healthy subjects and patients with chronic obstructive pulmonary disease. Journal of Clinical Pharmacology. 2007;47(10):1335–1341. doi: 10.1177/0091270006295788.
    1. Aoshiba K., Nagai A. Differences in airway remodeling between asthma and chronic obstructive pulmonary disease. Clinical Reviews in Allergy and Immunology. 2004;27(1):35–43. doi: 10.1385/criai:27:1:035.
    1. Shaykhiev R., Otaki F., Bonsu P., et al. Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium in vivo. Cellular and Molecular Life Sciences. 2011;68(5):877–892. doi: 10.1007/s00018-010-0500-x.
    1. Applied Research Associates. Multiple-Path Dosimetry Model. 2009. .
    1. Yeh H. C., Schum G. M. Models of human lung airways and their application to inhaled particle deposition. Bulletin of Mathematical Biology. 1980;42(3):461–480. doi: 10.1007/bf02460796.

Source: PubMed

3
Abonnieren