Non-invasive brain stimulation: enhancing motor and cognitive functions in healthy old subjects

Maximo Zimerman, Friedhelm C Hummel, Maximo Zimerman, Friedhelm C Hummel

Abstract

Healthy aging is accompanied by changes in cognitive and motor functions that result in impairment of activities of daily living. This process involves a number of modifications in the brain and is associated with metabolic, structural, and physiological changes; some of these serving as adaptive responses to the functional declines. Up to date there are no universally accepted strategies to ameliorate declining functions in this population. An essential basis to develop such strategies is a better understanding of neuroplastic changes during healthy aging. In this context, non-invasive brain stimulation techniques, such as transcranial direct current or transcranial magnetic stimulation, provide an attractive option to modulate cortical neuronal assemblies, even with subsequent changes in neuroplasticity. Thus, in the present review we discuss the use of these techniques as a tool to study underlying cortical mechanisms during healthy aging and as an interventional strategy to enhance declining functions and learning abilities in aged subjects.

Keywords: TMS; brain plasticity; brain stimulation; cognition; healthy aging; motor; tDCS.

Figures

Figure 1
Figure 1
Disruption of function of the ipsilateral motor cortex by tDCS. tDCS disrupting effects on ipsilateral motor cortex during a motor learning task (single subject data). Design: cathodal (inhibitory) tDCS or Sham was applied concurrent with training of a finger sequence, performed with the right hand. The stimulation was delivered in a counterbalanced double-blind design. The motor task was re-evaluated 90 min and 24 h after training. Questionnaires (Q1–6) regarding attention, fatigue, and hand fatigue were given before and after each session. Results: decreased number of correct sequences was seen with cathodal tDCS applied to the ipsilateral motor cortex but not with Sham stimulation. This data supports the functional relevance of the ipsilateral motor cortex for hand functions and support the view of a compensatory mechanism that takes place in old subjects. (This single subject data is part of a study presented in the international conference of TMS and tDCS by the authors, Gottingen, 2008).
Figure 2
Figure 2
Facilitating skilled motor functions by tDCS. Effect of anodal (excitatory) tDCS applied to the primary motor cortex on the Jebsen-Taylor hand function test (Hummel et al., 2009a). Design: After familiarization with the JTT, subjects took part in two sessions (before and after tDCS) composed of 3 JTT. tDCS or Sham was applied during the first 20 min of the second session in a counterbalanced double-blind design. Questionnaires assessing attention and fatigue during the experiment where given (Q1–4). Results: (A) tDCS but not Sham stimulation resulted in shorter total time of JTT (JTT1–3 vs JTT4–6). Performance improvements with tDCS persisted for at least 30 min. (B) Correlation between age and tDCS-induced improvement indicating that the older the subjects the more prominent was the improvement in JTT. (Figure modified from Hummel et al., 2009a).
Figure 3
Figure 3
Improving motor learning by tDCS: single subject data. Performance enhancing effects of tDCS on a motor learning task (single subject data). Design: anodal (facilitatory) tDCS or Sham was applied concurrent with training of a finger sequence, performed with the right. Result: The main finding was that anodal tDCS combined with a motor training enhanced the number of correctly played sequences in old healthy subjects but not with Sham stimulation. Performance improvements persisted beyond the stimulation period and were evident at least 24 h after the training concurrent with tDCS. (This single subject data is part of a study presented in the international conference of Neurorehabilitation by the authors, Vienna 2010).

References

    1. Anderson B., Rutledge V. (1996). Age and hemisphere effects on dendritic structure. Brain 119(Pt 6), 1983–199010.1093/brain/119.6.1983
    1. Antal A., Nitsche M. A., Kruse W., Kincses T. Z., Hoffmann K. P., Paulus W. (2004). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J. Cogn. Neurosci. 16, 521–52710.1162/089892904323057263
    1. Balducci L., Extermann M. (2000). Cancer and aging. An evolving panorama. Hematol. Oncol. Clin. North Am. 14, 1–1610.1016/S0889-8588(05)70274-4
    1. Bastin M. E., Maniega S. M., Ferguson K. J., Brown L. J., Wardlaw J. M., MacLullich A. M., Clayden J. D. (2010). Quantifying the effects of normal ageing on white matter structure using unsupervised tract shape modelling. Neuroimage 51, 1–1010.1016/j.neuroimage.2010.02.036
    1. Bennett I. J., Madden D. J., Vaidya C. J., Howard D. V., Howard J. H., Jr. (2010). Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging. Hum. Brain Mapp. 31, 378–390
    1. Binder D. K., Scharfman H. E. (2004). Brain-derived neurotrophic factor. Growth Factors 22, 123–13110.1080/08977190410001723308
    1. Boggio P. S., Campanha C., Valasek C. A., Fecteau S., Pascual-Leone A., Fregni F. (2010). Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. Eur. J. Neurosci. 31, 593–59710.1111/j.1460-9568.2010.07080.x
    1. Boroojerdi B., Diefenbach K., Ferbert A. (1996). Transcallosal inhibition in cortical and subcortical cerebral vascular lesions. J. Neurol. Sci. 144, 160–17010.1016/S0022-510X(96)00222-5
    1. Braver T. S., Barch D. M. (2002). A theory of cognitive control, aging cognition, and neuromodulation. Neurosci. Biobehav. Rev. 26, 809–81710.1016/S0149-7634(02)00067-2
    1. Brown R. M., Robertson E. M., Press D. Z. (2009). Sequence skill acquisition and off-line learning in normal aging. PLoS One 4, e6683.10.1371/journal.pone.0006683
    1. Buonomano D. V., Merzenich M. M. (1998). Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–18610.1146/annurev.neuro.21.1.149
    1. Burke S. N., Barnes C. A. (2006). Neural plasticity in the ageing brain. Nat. Rev. Neurosci. 7, 30–4010.1038/nrn1809
    1. Cabeza R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol. Aging 17, 85–10010.1037/0882-7974.17.1.85
    1. Cabeza R., Anderson N. D., Locantore J. K., McIntosh A. R. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 17, 1394–140210.1006/nimg.2002.1280
    1. Cabeza R., McIntosh A. R., Tulving E., Nyberg L., Grady C. L. (1997). Age-related differences in effective neural connectivity during encoding and recall. Neuroreport 8, 3479–348310.1097/00001756-199711100-00013
    1. Celsis P. (2000). Age-related cognitive decline, mild cognitive impairment or preclinical Alzheimer's disease? Ann. Med. 32, 6–1410.3109/07853890008995904
    1. Cheeran B., Talelli P., Mori F., Koch G., Suppa A., Edwards M., Houlden H., Bhatia K., Greenwood R., Rothwell J. C. (2008). A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J. Physiol. 586, 5717–572510.1113/jphysiol.2008.159905
    1. Chen R. (2004). Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp. Brain Res. 154, 1–1010.1007/s00221-003-1684-1
    1. Chen R., Lozano A. M., Ashby P. (1999). Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp. Brain Res. 128, 539–54210.1007/s002210050878
    1. Cirillo J., Lavender A. P., Ridding M. C., Semmler J. G. (2009). Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals. J. Physiol. 587, 5831–584210.1113/jphysiol.2009.181834
    1. Cohen L. G., Bandinelli S., Findley T. W., Hallett M. (1991). Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain 114(Pt 1B), 615–62710.1093/brain/114.1.615
    1. Cotelli M., Manenti R., Cappa S. F., Zanetti O., Miniussi C. (2008). Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur. J. Neurol. 15, 1286–129210.1111/j.1468-1331.2008.02202.x
    1. Craik F. I., Bialystok E. (2006). Planning and task management in older adults: cooking breakfast. Mem. Cognit. 34, 1236–1249
    1. Duque J., Mazzocchio R., Dambrosia J., Murase N., Olivier E., Cohen L. G. (2005). Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement. Cereb. Cortex 15, 588–59310.1093/cercor/bhh160
    1. Egan M. F., Kojima M., Callicott J. H., Goldberg T. E., Kolachana B. S., Bertolino A., Zaitsev E., Gold B., Goldman D., Dean M., Lu B., Weinberger D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269
    1. Eisen A., Entezari-Taher M., Stewart H. (1996). Cortical projections to spinal motoneurons: changes with aging and amyotrophic lateral sclerosis. Neurology 46, 1396–1404
    1. Fathi D., Ueki Y., Mima T., Koganemaru S., Nagamine T., Tawfik A., Fukuyama H. (2009). Effects of aging on the human motor cortical plasticity studied by paired associative stimulation. Clin. Neurophysiol. 121, 90–9310.1016/j.clinph.2009.07.048
    1. Ferbert A., Priori A., Rothwell J. C., Day B. L., Colebatch J. G., Marsden C. D. (1992). Interhemispheric inhibition of the human motor cortex. J. Physiol. 453, 525–546
    1. Ferrucci R., Mameli F., Guidi I., Mrakic-Sposta S., Vergari M., Marceglia S., Cogiamanian F., Barbieri S., Scarpini E., Priori A. (2008). Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 71, 493–49810.1212/01.wnl.0000317060.43722.a3
    1. Floel A., Vomhof P., Lorenzen A., Roesser N., Breitenstein C., Knecht S. (2008). Levodopa improves skilled hand functions in the elderly. Eur. J. Neurosci. 27, 1301–130710.1111/j.1460-9568.2008.06079.x
    1. Fregni F., Pascual-Leone A. (2007). Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 3, 383–39310.1038/ncpneuro0530
    1. Fritsch B., Reis J., Martinowich K., Schambra H. M., Ji Y., Cohen L. G., Lu B. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66, 198–20410.1016/j.neuron.2010.03.035
    1. Fujiki M., Steward O. (1997). High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS. Brain Res. Mol. Brain Res. 44, 301–30810.1016/S0169-328X(96)00232-X
    1. Gandiga P. C., Hummel F. C., Cohen L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 117, 845–85010.1016/j.clinph.2005.12.003
    1. Hallett M. (1995). Transcranial magnetic stimulation. Negative effects. Adv. Neurol. 67, 107–113
    1. Hallett M. (2007). Transcranial magnetic stimulation: a primer. Neuron 55, 187–19910.1016/j.neuron.2007.06.026
    1. Hanajima R., Ugawa Y., Terao Y., Sakai K., Furubayashi T., Machii K., Kanazawa I. (1998). Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. J. Physiol. 509(Pt 2), 607–61810.1111/j.1469-7793.1998.607bn.x
    1. Hausmann A., Weis C., Marksteiner J., Hinterhuber H., Humpel C. (2000). Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus. Brain Res. Mol. Brain Res. 76, 355–36210.1016/S0169-328X(00)00024-3
    1. Heise K. F., Steven B., Liuzzi G., Thomalla G., Jonas M., Muller-Vahl K., Sauseng P., Munchau A., Gerloff C., Hummel F. C. (2010). Altered modulation of intracortical excitability during movement preparation in Gilles de la Tourette syndrome. Brain 133, 580–59010.1093/brain/awp299
    1. Herrmann M. J., Walter A., Ehlis A. C., Fallgatter A. J. (2006). Cerebral oxygenation changes in the prefrontal cortex: effects of age and gender. Neurobiol. Aging 27, 888–89410.1016/j.neurobiolaging.2005.04.013
    1. Hogan M. J., Kelly C. A., Craik F. I. (2006). The effects of attention switching on encoding and retrieval of words in younger and older adults. Exp. Aging Res. 32, 153–18310.1080/03610730600553935
    1. Huang Y. Z., Edwards M. J., Rounis E., Bhatia K. P., Rothwell J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron 45, 201–20610.1016/j.neuron.2004.12.033
    1. Hummel F. C., Cohen L. G. (2005). Drivers of brain plasticity. Curr. Opin. Neurol. 18, 667–67410.1097/01.wco.0000189876.37475.42
    1. Hummel F., Voller B., Celnik P., Floel A., Giraux P., Gerloff C., Cohen L. G. (2006). Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci. 7, 73.10.1186/1471-2202-7-73
    1. Hummel F. C., Cohen L. G. (2006). Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 5, 708–71210.1016/S1474-4422(06)70525-7
    1. Hummel F. C., Celnik P., Giraux P., Floel A., Wu W. H., Gerloff C., Cohen L. G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128, 490–49910.1093/brain/awh369
    1. Hummel F. C., Heise K., Celnik P., Floel A., Gerloff C., Cohen L. G. (2009a). Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiol. Aging. 31, 2160–216810.1016/j.neurobiolaging.2008.12.008
    1. Hummel F. C., Steven B., Hoppe J., Heise K., Thomalla G., Cohen L. G., Gerloff C. (2009b). Deficient intracortical inhibition (SICI) during movement preparation after chronic stroke. Neurology 72, 1766–177210.1212/WNL.0b013e3181a609c5
    1. Huntley G. W. (1997). Correlation between patterns of horizontal connectivity and the extend of short-term representational plasticity in rat motor cortex [see comments]. Cereb. Cortex 7, 143–15610.1093/cercor/7.2.143
    1. Jenkins W. M., Merzenich M. M., Recanzone G. (1990). Neocortical representational dynamics in adult primates: implications for neuropsychology. Neuropsychologia 28, 573–58410.1016/0028-3932(90)90035-M
    1. Ji R. R., Schlaepfer T. E., Aizenman C. D., Epstein C. M., Qiu D., Huang J. C., Rupp F. (1998). Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proc. Natl. Acad. Sci. U.S.A. 95, 15635–1564010.1073/pnas.95.26.15635
    1. Jones E. G. (1993). GABAergic neurons and their role in cortical plasticity in primates. Cereb. Cortex 3, 361–37210.1093/cercor/3.5.361-a
    1. Kaelin-Lang A., Luft A. R., Sawaki L., Burstein A. H., Sohn Y. H., Cohen L. G. (2002). Modulation of human corticomotor excitability by somatosensory input. J. Physiol. 540, 623–63310.1113/jphysiol.2001.012801
    1. Kleim J. A., Chan S., Pringle E., Schallert K., Procaccio V., Jimenez R., Cramer S. C. (2006). BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat. Neurosci. 9, 735–73710.1038/nn1699
    1. Komiyama T., Sato T. R., O'Connor D. H., Zhang Y. X., Huber D., Hooks B. M., Gabitto M., Svoboda K. (2010). Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464, 1182–118610.1038/nature08897
    1. Krampe R. T., Engbert R., Kliegl R. (2002). The effects of expertise and age on rhythm production: adaptations to timing and sequencing constraints. Brain Cogn. 48, 179–19410.1006/brcg.2001.1312
    1. Kujirai T., Caramia M. D., Rothwell J. C., Day B. L., Thompson P. D., Ferbert A., Wroe S., Asselman P., Marsden C. D. (1993). Corticocortical inhibition in human motor cortex. J. Physiol. (Lond.) 471, 501–519
    1. Logsdon R. G., Gibbons L. E., McCurry S. M., Teri L. (2002). Assessing quality of life in older adults with cognitive impairment. Psychosom. Med. 64, 510–519
    1. Mattay V. S., Fera F., Tessitore A., Hariri A. R., Das S., Callicott J. H., Weinberger D. R. (2002). Neurophysiological correlates of age-related changes in human motor function. Neurology 58, 630–635
    1. McGinley M., Hoffman R. L., Russ D. W., Thomas J. S., Clark B. C. (2010). Older adults exhibit more intracortical inhibition and less intracortical facilitation than young adults. Exp. Gerontol. 45, 671–67810.1016/j.exger.2010.04.005
    1. Muller M. B., Toschi N., Kresse A. E., Post A., Keck M. E. (2000). Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology 23, 205–21510.1016/S0893-133X(00)00099-3
    1. Muller-Dahlhaus J. F., Orekhov Y., Liu Y., Ziemann U. (2008). Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp. Brain Res. 187, 467–47510.1007/s00221-008-1319-7
    1. Nielson K. A., Langenecker S. A., Garavan H. (2002). Differences in the functional neuroanatomy of inhibitory control across the adult life span. Psychol. Aging 17, 56–7110.1037/0882-7974.17.1.56
    1. Nitsche M. A., Cohen L., Wassermann E., Priori A., Lang N., Antal A., Paulus W., Hummel F., Boggio S., Fregni F., Pascual-Leone A. (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–22310.1016/j.brs.2008.06.004
    1. Nitsche M. A., Fricke K., Henschke U., Schlitterlau A., Liebetanz D., Lang N., Henning S., Tergau F., Paulus W. (2003a). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 553, 293–30110.1113/jphysiol.2003.049916
    1. Nitsche M. A., Liebetanz D., Antal A., Lang N., Tergau F., Paulus W. (2003b). Modulation of cortical excitability by weak direct current stimulation – technical, safety and functional aspects. Suppl. Clin. Neurophysiol. 56, 255–27610.1016/S1567-424X(09)70230-2
    1. Nitsche M. A., Jaussi W., Liebetanz D., Lang N., Tergau F., Paulus W. (2004). Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology 29, 1573–157810.1038/sj.npp.1300517
    1. Nitsche M. A., Lampe C., Antal A., Liebetanz D., Lang N., Tergau F., Paulus W. (2006). Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex, 73. Eur. J. Neurosci. 23, 1651–165710.1111/j.1460-9568.2006.04676.x
    1. Oliviero A., Profice P., Tonali P. A., Pilato F., Saturno E., Dileone M., Ranieri F., Di Lazzaro V. (2006). Effects of aging on motor cortex excitability. Neurosci. Res. 55, 74–7710.1016/j.neures.2006.02.002
    1. Peinemann A., Lehner C., Conrad B., Siebner H. R. (2001). Age-related decrease in paired-pulse intracortical inhibition in the human primary motor cortex. Neurosci. Lett. 313, 33–3610.1016/S0304-3940(01)02239-X
    1. Pellicciari M. C., Miniussi C., Rossini P. M., De Gennaro L. (2009). Increased cortical plasticity in the elderly: changes in the somatosensory cortex after paired associative stimulation. Neuroscience 163, 266–27610.1016/j.neuroscience.2009.06.013
    1. Persson J., Nyberg L., Lind J., Larsson A., Nilsson L. G., Ingvar M., Buckner R. L. (2006). Structure-function correlates of cognitive decline in aging. Cereb. Cortex 16, 907–91510.1093/cercor/bhj036
    1. Pierpaoli C., Jezzard P., Basser P. J., Barnett A., Di Chiro G. (1996). Diffusion tensor MR imaging of the human brain. Radiology 201, 637–648
    1. Quartarone A., Lang N., Rizzo V., Bagnato S., Morgante F., Sant'angelo A., Crupi D., Battaglia F., Messina C., Girlanda P. (2007). Motor cortex abnormalities in amyotrophic lateral sclerosis with transcranial direct-current stimulation. Muscle Nerve 35, 620–62410.1002/mus.20737
    1. Reis J., Schambra H. M., Cohen L. G., Buch E. R., Fritsch B., Zarahn E., Celnik P. A., Krakauer J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. U.S.A. 106, 1590–159510.1073/pnas.0805413106
    1. Resnick S. M., Pham D. L., Kraut M. A., Zonderman A. B., Davatzikos C. (2003). Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J. Neurosci. 23, 3295–3301
    1. Reuter-Lorenz P. A., Jonides J., Smith E. E., Hartley A., Miller A., Marshuetz C., Koeppe R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J. Cogn. Neurosci. 12, 174–18710.1162/089892900561814
    1. Reynolds C., Ashby P. (1999). Inhibition in the human motor cortex is reduced just before a voluntary contraction. Neurology 53, 730–735
    1. Ridding M. C., Ziemann U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 588, 2291–230410.1113/jphysiol.2010.190314
    1. Rioult-Pedotti M. S., Friedman D., Donoghue J. P. (2000). Learning-induced LTP in neocortex. Science 290, 533–53610.1126/science.290.5491.533
    1. Rogasch N. C., Dartnall T. J., Cirillo J., Nordstrom M. A., Semmler J. G. (2009). Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults. J. Appl. Physiol. 107, 1874–188310.1152/japplphysiol.00443.2009
    1. Rosenkranz K., Kacar A., Rothwell J. C. (2007). Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J. Neurosci. 27, 12058–1206610.1523/JNEUROSCI.2663-07.2007
    1. Rossi S., Hallett M., Rossini P. M., Pascual-Leone A. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–203910.1016/j.clinph.2009.08.016
    1. Roth G. S., Joseph J. A. (1994). Cellular and molecular mechanisms of impaired dopaminergic function during aging. Ann. N. Y. Acad. Sci. 719, 129–13510.1111/j.1749-6632.1994.tb56824.x
    1. Sailer A., Dichgans J., Gerloff C. (2000). The influence of normal aging on the cortical processing of a simple motor task. Neurology 55, 979–985
    1. Sale M. V., Ridding M. C., Nordstrom M. A. (2007). Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation. Exp. Brain Res. 181, 615–62610.1007/s00221-007-0960-x
    1. Sale M. V., Semmler J. G. (2005). Age-related differences in corticospinal control during functional isometric contractions in left and right hands. J. Appl. Physiol. 99, 1483–149310.1152/japplphysiol.00371.2005
    1. Sawaki L., Yaseen Z., Kopylev L., Cohen L. G. (2003). Age-dependent changes in the ability to encode a novel elementary motor memory. Ann. Neurol. 53, 521–52410.1002/ana.10529
    1. Scherder E., Dekker W., Eggermont L. (2008). Higher-level hand motor function in aging and (preclinical) dementia: its relationship with (instrumental) activities of daily life – a mini-review. Gerontology 54, 333–34110.1159/000168203
    1. Schmidt S., Redecker C., Bruehl C., Witte O. W. (2010). Age-related decline of functional inhibition in rat cortex. Neurobiol. Aging 31, 504–51110.1016/j.neurobiolaging.2008.04.006
    1. Siebner H. R., Lang N., Rizzo V., Nitsche M. A., Paulus W., Lemon R. N., Rothwell J. C. (2004). Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J. Neurosci. 24, 3379–338510.1523/JNEUROSCI.5316-03.2004
    1. Silvanto J., Muggleton N., Walsh V. (2008). State-dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci. 12, 447–45410.1016/j.tics.2008.09.004
    1. Stadlbauer A., Salomonowitz E., Strunk G., Hammen T., Ganslandt O. (2008). Age-related degradation in the central nervous system: assessment with diffusion-tensor imaging and quantitative fiber tracking. Radiology 247, 179–18810.1148/radiol.2471070707
    1. Stebbins G. T., Carrillo M. C., Dorfman J., Dirksen C., Desmond J. E., Turner D. A., Bennett D. A., Wilson R. S., Glover G., Gabrieli J. D. (2002). Aging effects on memory encoding in the frontal lobes. Psychol. Aging 17, 44–5510.1037/0882-7974.17.1.44
    1. Stefan K., Kunesch E., Cohen L. G., Benecke R., Classen J. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123(Pt 3), 572–58410.1093/brain/123.3.572
    1. Strafella A. P., Paus T., Fraraccio M., Dagher A. (2003). Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 126, 2609–261510.1093/brain/awg268
    1. Sullivan E. V., Pfefferbaum A. (2006). Diffusion tensor imaging and aging. Neurosci. Biobehav. Rev. 30, 749–76110.1016/j.neubiorev.2006.06.002
    1. Talelli P., Ewas A., Waddingham W., Rothwell J. C., Ward N. S. (2008a). Neural correlates of age-related changes in cortical neurophysiology. Neuroimage 40, 1772–178110.1016/j.neuroimage.2008.01.039
    1. Talelli P., Waddingham W., Ewas A., Rothwell J. C., Ward N. S. (2008b). The effect of age on task-related modulation of interhemispheric balance. Exp. Brain Res. 186, 59–6610.1007/s00221-007-1205-8
    1. Tecchio F., Zappasodi F., Pasqualetti P., De Gennaro L., Pellicciari M. C., Ercolani M., Squitti R., Rossini P. M. (2008). Age dependence of primary motor cortex plasticity induced by paired associative stimulation. Clin. Neurophysiol. 119, 675–68210.1016/j.clinph.2007.10.023
    1. Todd G., Kimber T. E., Ridding M. C., Semmler J. G. (2010). Reduced motor cortex plasticity following inhibitory rTMS in older adults. Clin. Neurophysiol. 121, 441–44710.1016/j.clinph.2009.11.089
    1. Toescu E. C., Verkhratsky A., Landfield P. W. (2004). Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci. 27, 614–62010.1016/j.tins.2004.07.010
    1. UN-Report (2005). Human Development Report 2005. International cooperation at a crossroads-aid, trade and security in an unequal world. United Nations; ISBN 97.90195305111, New York
    1. Volkow N. D., Wang G. J., Fowler J. S., Ding Y. S., Gur R. C., Gatley J., Logan J., Moberg P. J., Hitzemann R., Smith G., Pappas N. (1998). Parallel loss of presynaptic and postsynaptic dopamine markers in normal aging. Ann. Neurol. 44, 143–14710.1002/ana.410440125
    1. Ward N. S., Frackowiak R. S. (2003). Age-related changes in the neural correlates of motor performance. Brain 126, 873–88810.1093/brain/awg071
    1. Ward N. S., Swayne O. B., Newton J. M. (2008). Age-dependent changes in the neural correlates of force modulation: an fMRI study. Neurobiol. Aging 29, 1434–144610.1016/j.neurobiolaging.2007.04.017
    1. Wassermann E. M. (1998). Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr. Clin. Neurophysiol. 108, 1–1610.1016/S0168-5597(97)00096-8
    1. Wassermann E. M. (2002). Variation in the response to transcranial magnetic brain stimulation in the general population. Clin. Neurophysiol. 113, 1165–117110.1016/S1388-2457(02)00144-X
    1. Werhahn K. J., Kunesch E., Noachtar S., Benecke R., Classen J. (1999). Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J. Physiol. 517(Pt 2), 591–59710.1111/j.1469-7793.1999.0591t.x
    1. Wu A. D., Fregni F., Simon D. K., Deblieck C., Pascual-Leone A. (2008). Noninvasive brain stimulation for Parkinson's disease and dystonia. Neurotherapeutics 5, 345–36110.1016/j.nurt.2008.02.002
    1. Yu Z. Y., Wang W., Fritschy J. M., Witte O. W., Redecker C. (2006). Changes in neocortical and hippocampal GABAA receptor subunit distribution during brain maturation and aging. Brain Res. 1099, 73–8110.1016/j.brainres.2006.04.118
    1. Zaman V., Boger H. A., Granholm A. C., Rohrer B., Moore A., Buhusi M., Gerhardt G. A., Hoffer B. J., Middaugh L. D. (2008). The nigrostriatal dopamine system of aging GFRalpha-1 heterozygous mice: neurochemistry, morphology and behavior. Eur. J. Neurosci. 28, 1557–156810.1111/j.1460-9568.2008.06456.x
    1. Ziemann U., Lonnecker S., Steinhoff B. J., Paulus W. (1996). Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann. Neurol. 40, 367–37810.1002/ana.410400306
    1. Ziemann U., Tam A., Butefisch C., Cohen L. G. (2002). Dual modulating effects of amphetamine on neuronal excitability and stimulation-induced plasticity in human motor cortex. Clin. Neurophysiol. 113, 1308–131510.1016/S1388-2457(02)00171-2
    1. Zimerman M., Nitsch M., Cohen L. G., Gerloff C., Hummel F. (2008). “The functional role of the ipsilateral motor cortex for motor sequence learning in the elderly,” in Proceedings of the Third International Conference on Transcranial Magnetic and Direct Current Stimulation, Gottingen 2008.
    1. Zimerman M., Nitsch M., Giraux P., Liuzzi G., Cohen L. G., Gerloff C., Hummel F. C. (2010). “Neuroenhancement of the aging brain: restoring skill acquisition in the elderly,” in Proceedings of the Sixth World Congress for Neurorehabilitation, Vienna 2010 (Poster session).

Source: PubMed

3
Abonnieren