Vaginal Lactoferrin Modulates PGE2, MMP-9, MMP-2, and TIMP-1 Amniotic Fluid Concentrations

Alessandro Trentini, Martina Maritati, Carlo Cervellati, Maria C Manfrinato, Arianna Gonelli, Carlo A Volta, Fortunato Vesce, Pantaleo Greco, Franco Dallocchio, Tiziana Bellini, Carlo Contini, Alessandro Trentini, Martina Maritati, Carlo Cervellati, Maria C Manfrinato, Arianna Gonelli, Carlo A Volta, Fortunato Vesce, Pantaleo Greco, Franco Dallocchio, Tiziana Bellini, Carlo Contini

Abstract

Inflammation plays an important role in pregnancy, and cytokine and matrix metalloproteases (MMPs) imbalance has been associated with premature rupture of membranes and increased risk of preterm delivery. Previous studies have demonstrated that lactoferrin (LF), an iron-binding protein with anti-inflammatory properties, is able to decrease amniotic fluid (AF) levels of IL-6. Therefore, we aimed to evaluate the effect of vaginal LF administration on amniotic fluid PGE2 level and MMP-TIMP system in women undergoing genetic amniocentesis. One hundred and eleven women were randomly divided into controls (n = 57) or treated with LF 4 hours before amniocentesis (n = 54). Amniotic fluid PGE2, active MMP-9 and MMP-2, and TIMP-1 and TIMP-2 concentrations were determined by commercially available assays and the values were normalized by AF creatinine concentration. PGE2, active MMP-9, and its inhibitor TIMP-1 were lower in LF-treated group than in controls (p < 0.01, p < 0.005, and p < 0.001, resp.). Conversely, active MMP-2 (p < 0.0001) and MMP-2/TIMP-2 molar ratio (p < 0.001) were increased, whilst TIMP-2 was unchanged. Our data suggest that LF administration is able to modulate the inflammatory response following amniocentesis, which may counteract cytokine and prostanoid imbalance that leads to abortion. This trial is registered with Clinical Trial number NCT02695563.

Figures

Figure 1
Figure 1
Concentrations of the inflammation markers measured in the amniotic fluids of controls and patients treated with lactoferrin 4 hours before amniocentesis. Values were normalized for the creatinine concentration and are presented as ng/mg creatinine. The Mann-Whitney U test was used for the comparison between the groups. Significant lower levels of PGE2 ((a), median [interquartile range] controls: 5.38 [4.44–8.24]; LF treated: 3.87 [2.97–6.33], p < 0.01), active MMP-9 ((b), controls: 71.02 [34.51–105.02]; LF treated: 42.67 [13.66–81.12], p < 0.005), and TIMP-1 ((d), controls: 84047 [66028–97949]; LF treated: 65952 [44201–82110], p < 0.001) were found in lactoferrin-treated patients compared to controls. Increased levels of active MMP-2 ((c), controls: 105.67 [80.61–137.17]; LF treated: 282.90 [127.40–492.71], p < 0.0001) were found in patients treated with lactoferrin whereas the levels of TIMP-2 were comparable ((e), controls: 5098 [3276–6829]; LF treated: 6266 [4031–9959], p = 0.233). In all the panels, the line between the data represents the median. PGE2: prostaglandin E2; MMP-9: matrix metalloproteinase-9; MMP-2: matrix metalloproteinase-2; TIMP-1: tissue inhibitor of metalloproteinase-1; TIMP-2: tissue inhibitor of metalloproteinase-2.
Figure 2
Figure 2
Evaluation of MMP/TIMP molar ratio in controls and patients treated with lactoferrin. MMP-9/TIMP-1 molar ratio was not different in controls and patients treated with lactoferrin 4 hours before amniocentesis (a), whereas we observed an increase in the MMP-2/TIMP-2 ratio after treatment with lactoferrin ((b), p < 0.0001). It is noteworthy that the ratio was below 1. In all the panels, the line between the data represents the median. MMP-9: matrix metalloproteinase-9; MMP-2: matrix metalloproteinase-2; TIMP-1: tissue inhibitor of metalloproteinase-1; TIMP-2: tissue inhibitor of metalloproteinase-2.

References

    1. Mor G., Cardenas I., Abrahams V., Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Annals of the New York Academy of Sciences. 2011;1221(1):80–87. doi: 10.1111/j.1749-6632.2010.05938.x.
    1. Romero R., Espinoza J., Gonçalves L. F., Kusanovic J. P., Friel L. A., Nien J. K. Inflammation in preterm and term labour and delivery. Seminars in Fetal and Neonatal Medicine. 2006;11(5):317–326. doi: 10.1016/j.siny.2006.05.001.
    1. Romero R., Dey S. K., Fisher S. J. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–765. doi: 10.1126/science.1251816.
    1. Borgida A. F., Mills A. A., Feldman D. M., Rodis J. F., Egan J. F. X. Outcome of pregnancies complicated by ruptured membranes after genetic amniocentesis. American Journal of Obstetrics and Gynecology. 2000;183(4):937–939. doi: 10.1067/mob.2000.108872.
    1. Nigro G., Mazzocco M., Mattia E., Di Renzo G. C., Carta G., Anceschi M. M. Role of the infections in recurrent spontaneous abortion. Journal of Maternal-Fetal and Neonatal Medicine. 2011;24(8):983–989. doi: 10.3109/14767058.2010.547963.
    1. Lee S. Y., Park K. H., Jeong E. H., Oh K. J., Ryu A., Kim A. Intra-amniotic infection/inflammation as a risk factor for subsequent ruptured membranes after clinically indicated amniocentesis in preterm labor. Journal of Korean Medical Science. 2013;28(8):1226–1232. doi: 10.3346/jkms.2013.28.8.1226.
    1. Wenstrom K. D., Andrews W. W., Tamura T., DuBard M. B., Johnston K. E., Hemstreet G. P. Elevated amniotic fluid interleukin-6 levels at genetic amniocentesis predict subsequent pregnancy loss. American Journal of Obstetrics and Gynecology. 1996;175(4):830–833. doi: 10.1016/s0002-9378(96)80007-x.
    1. Challis J. R., Lockwood C. J., Myatt L., Norman J. E., Strauss J. F., III, Petraglia F. Inflammation and pregnancy. Reproductive Sciences. 2009;16(2):206–215. doi: 10.1177/1933719108329095.
    1. Vadillo-Ortega F., Estrada-Gutiérrez G. Role of matrix metalloproteinases in preterm labour. BJOG: An International Journal of Obstetrics and Gynaecology. 2005;112(supplement 1):19–22. doi: 10.1111/j.1471-0528.2005.00579.x.
    1. Lee S. M., Park J. S., Norwitz E. R., et al. Mid-trimester amniotic fluid pro-inflammatory biomarkers predict the risk of spontaneous preterm delivery in twins: a retrospective cohort study. Journal of Perinatology. 2015;35(8):542–546. doi: 10.1038/jp.2015.29.
    1. Fortunato S. J., Menon R., Lombardi S. J. MMP/TIMP imbalance in amniotic fluid during PROM: an indirect support for endogenous pathway to membrane rupture. Journal of Perinatal Medicine. 1999;27(5):362–368.
    1. Vadillo-Ortega F., Hernandez A., Gonzalez-Avila G., Bermejo L., Iwata K., Strauss J. F., III Increased matrix metalloproteinase activity and reduced tissue inhibitor of metalloproteinases-1 levels in amniotic fluids from pregnancies complicated by premature rupture of membranes. American Journal of Obstetrics and Gynecology. 1996;174(4):1371–1376. doi: 10.1016/S0002-9378(96)70687-7.
    1. Xu P., Alfaidy N., Challis J. R. G. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in human placenta and fetal membranes in relation to preterm and term labor. The Journal of Clinical Endocrinology & Metabolism. 2002;87(3):1353–1361. doi: 10.1210/jc.87.3.1353.
    1. Yonemoto H., Young C. B., Ross J. T., Guilbert L. L., Fairclough R. J., Olson D. M. Changes in Matrix Metalloproteinase (MMP)-2 and MMP-9 in the fetal amnion and chorion during gestation and at term and preterm labor. Placenta. 2006;27(6-7):669–677. doi: 10.1016/j.placenta.2005.05.014.
    1. Ota A., Yonemoto H., Someya A., Itoh S., Kinoshita K., Nagaoka I. Changes in matrix metalloproteinase 2 activities in amniochorions during premature rupture of membranes. Journal of the Society for Gynecologic Investigation. 2006;13(8):592–597. doi: 10.1016/j.jsgi.2006.10.001.
    1. Maymon E., Romero R., Pacora P., et al. A role for the 72 kDa gelatinase (MMP-2) and its inhibitor (TIMP-2) in human parturition, premature rupture of membranes and intraamniotic infection. Journal of Perinatal Medicine. 2001;29(4):308–316. doi: 10.1515/jpm.2001.044.
    1. Maymon E., Romero R., Pacora P., et al. Evidence of in vivo differential bioavailability of the active forms of matrix metalloproteinases 9 and 2 in parturition, spontaneous rupture of membranes, and intra-amniotic infection. American Journal of Obstetrics and Gynecology. 2000;183(4):887–894. doi: 10.1067/mob.2000.108878.
    1. Mazor M., Wiznitzer A., Maymon E., Leiberman J. R., Cohen A. Changes in amniotic fluid concentrations of prostaglandins E2 and F(2α) in women with preterm labor. Israel Journal of Medical Sciences. 1990;26(8):425–428.
    1. Hsu C.-D., Meaddough E., Aversa K., et al. Dual roles of amniotic fluid nitric oxide and prostaglandin E2 in preterm labor with intra-amniotic infection. American Journal of Perinatology. 1998;15(12):683–687. doi: 10.1055/s-2007-999302.
    1. Vesce F., Giugliano E., Bignardi S., et al. Vaginal lactoferrin administration before genetic amniocentesis decreases amniotic interleukin-6 levels. Gynecologic and Obstetric Investigation. 2014;77(4):245–249. doi: 10.1159/000358877.
    1. Legrand D., Elass E., Carpentier M., Mazurier J. Lactoferrin: a modulator of immune and inflammatory responses. Cellular and Molecular Life Sciences. 2005;62(22):2549–2559. doi: 10.1007/s00018-005-5370-2.
    1. González-Chávez S. A., Arévalo-Gallegos S., Rascón-Cruz Q. Lactoferrin: structure, function and applications. International Journal of Antimicrobial Agents. 2009;33(4):301.e1–301.e8. doi: 10.1016/j.ijantimicag.2008.07.020.
    1. Christiansen O. B., Nielsen H. S., Kolte A. M. Inflammation and miscarriage. Seminars in Fetal and Neonatal Medicine. 2006;11(5):302–308. doi: 10.1016/j.siny.2006.03.001.
    1. Romero R., Miranda J., Chaiworapongsa T., et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. American Journal of Reproductive Immunology. 2014;72(5):458–474. doi: 10.1111/aji.12296.
    1. Hillier S. L., Witkin S. S., Krohn M. A., Watts D. H., Kiviat N. B., Eschenbach D. A. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstetrics and Gynecology. 1993;81(6):941–948.
    1. Biggio J. R., Jr., Ramsey P. S., Cliver S. P., Lyon M. D., Goldenberg R. L., Wenstrom K. D. Midtrimester amniotic fluid matrix metalloproteinase-8 (MMP-8) levels above the 90th percentile are a marker for subsequent preterm premature rupture of membranes. American Journal of Obstetrics and Gynecology. 2005;192(1):109–113. doi: 10.1016/j.ajog.2004.06.103.
    1. Vrachnis N., Karavolos S., Iliodromiti Z., et al. Impact of mediators present in amniotic fluid on preterm labour. In Vivo. 2012;26(5):799–812.
    1. Vesce F., Buzzi M., Ferretti M. E., et al. Inhibition of amniotic prostaglandin E release by ampicillin. American Journal of Obstetrics & Gynecology. 1998;178(4):759–764. doi: 10.1016/s0002-9378(98)70488-0.
    1. Vescea F., Pavan B., Buzzi M., et al. Effect of different classes of antibiotics on amniotic prostaglandin E release. Prostaglandins and Other Lipid Mediators. 1999;57(4):207–218. doi: 10.1016/S0090-6980(99)00004-0.
    1. Vesce F., Pavan B., Lunghi L., et al. Inhibition of amniotic interleukin-6 and prostaglandin E2 release by ampicillin. Obstetrics and Gynecology. 2004;103(1):108–113. doi: 10.1097/01.AOG.0000101282.38902.13.
    1. Paesano R., Berlutti F., Pietropaoli M., Goolsbee W., Pacifici E., Valenti P. Lactoferrin efficacy versus ferrous sulfate in curing iron disorders in pregnant and non-pregnant women. International Journal of Immunopathology and Pharmacology. 2010;23(2):577–587.
    1. Bartal L., Padeh S., Passwell J. H. Lactoferrin inhibits prostaglandin E2 secretion by breast milk macrophages. Pediatric Research. 1987;21(1):54–57. doi: 10.1203/00006450-198701000-00013.
    1. Newsome A. L., Johnson J. P., Seipelt R. L., Thompson M. W. Apolactoferrin inhibits the catalytic domain of matrix metalloproteinase-2 by zinc chelation. Biochemistry and Cell Biology. 2007;85(5):563–572. doi: 10.1139/O07-073.
    1. Devlieger R., Deprest J. A., Gratacós E., Pijnenborg R., Leask R., Riley S. C. Matrix metalloproteinases -2 and -9 and their endogenous tissue inhibitors in fetal membrane repair following fetoscopy in a rabbit model. Molecular Human Reproduction. 2000;6(5):479–485. doi: 10.1093/molehr/6.5.479.
    1. Fainardi E., Castellazzi M., Tamborino C., et al. Potential relevance of cerebrospinal fluid and serum levels and intrathecal synthesis of active matrix metalloproteinase-2 (MMP-2) as markers of disease remission in patients with multiple sclerosis. Multiple Sclerosis. 2009;15(5):547–554. doi: 10.1177/1352458509102372.
    1. Castellazzi M., Tamborino C., De Santis G., et al. Timing of serum active MMP-9 and MMP-2 levels in acute and subacute phases after spontaneous intracerebral hemorrhage. Acta Neurochirurgica. 2010;106:137–140. doi: 10.1007/978-3-211-98811-4_24.
    1. McQuibban G. A., Gong J.-H., Wong J. P., Wallace J. L., Clark-Lewis I., Overall C. M. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood. 2002;100(4):1160–1167.
    1. Nishida Y., Miyamori H., Thompson E. W., Takino T., Endo Y., Sato H. Activation of matrix metalloproteinase-2 (MMP-2) by membrane type 1 matrix metalloproteinase through an artificial receptor for ProMMP-2 generates active MMP-2. Cancer Research. 2008;68(21):9096–9104. doi: 10.1158/0008-5472.CAN-08-2522.
    1. Roopnarinesingh S. Amniotic fluid creatinine in normal and abnormal pregnancies. Journal of Obstetrics and Gynaecology of the British Commonwealth. 1970;77(9):785–790. doi: 10.1111/j.1471-0528.1970.tb04399.x.
    1. Oliveira F. R., Barros E. G., Magalhães J. A. Biochemical profile of amniotic fluid for the assessment of fetal and renal development. Brazilian Journal of Medical and Biological Research. 2002;35(2):215–222. doi: 10.1590/S0100-879X2002000200010.

Source: PubMed

3
Abonnieren