Concentric and Eccentric Pedaling-Type Interval Exercise on a Soft Robot for Stable Coronary Artery Disease Patients: Toward a Personalized Protocol

Daniel P Fitze, Martino Franchi, Werner L Popp, Severin Ruoss, Silvio Catuogno, Karin Camenisch, Debora Lehmann, Christian M Schmied, David Niederseer, Walter O Frey, Martin Flück, Daniel P Fitze, Martino Franchi, Werner L Popp, Severin Ruoss, Silvio Catuogno, Karin Camenisch, Debora Lehmann, Christian M Schmied, David Niederseer, Walter O Frey, Martin Flück

Abstract

Background: Cardiovascular diseases are the leading causes of death worldwide, and coronary artery disease (CAD) is one of the most common causes of death in Europe. Leading cardiac societies recommend exercise as an integral part of cardiovascular rehabilitation because it reduces the morbidity and mortality of patients with CAD. Continuous low-intensity exercise using shortening muscle actions (concentric, CON) is a common training modality during cardiovascular rehabilitation. However, a growing clinical interest has been recently developed in high-intensity interval training (HIIT) for stable patients with CAD. Exercise performed with lengthening muscle actions (eccentric, ECC) could be tolerated better by patients with CAD as they can be performed with higher loads and lower metabolic cost than CON exercise.

Objective: We developed a clinical protocol on a soft robot to compare cardiovascular and muscle effects of repeated and work-matched CON versus ECC pedaling-type interval exercise between patients with CAD during cardiovascular rehabilitation. This study aims to ascertain whether the developed training protocols affect peak oxygen uptake (VO2peak), peak aerobic power output (Ppeak), and parameters of muscle oxygen saturation (SmO2) during exercise, and anaerobic muscle power.

Methods: We will randomize 20-30 subjects to either the CON or ECC group. Both groups will perform a ramp test to exhaustion before and after the training period to measure cardiovascular parameters and SmO2. Moreover, the aerobic skeletal muscle power (Ppeak) is measured weekly during the 8-week training period using a simulated squat jump and a counter movement jump on the soft robot and used to adjust the training load. The pedaling-type interval exercise on the soft robot is performed involving either CON or ECC muscle actions. The soft robotic device being used is a closed kinetic chain, force-controlled interactive training, and testing device for the lower extremities, which consists of two independent pedals and free footplates that are operated by pneumatic artificial muscles.

Results: The first patients with CAD, who completed the training, showed protocol-specific improvements, reflecting, in part, the lower aerobic training status of the patient completing the CON protocol. Rehabilitation under the CON protocol, more than under the ECC protocol, improved cardiovascular parameters, that is, VO2peak (+26% vs -6%), and Ppeak (+20% vs 0%), and exaggerated muscle deoxygenation during the ramp test (248% vs 49%). Conversely, markers of metabolic stress and recovery from the exhaustive ramp test improved more after the ECC than the CON protocol, that is, peak blood lactate (-9% vs +20%) and peak SmO2 (+7% vs -7%). Anaerobic muscle power only improved after the CON protocol (+18% vs -15%).

Conclusions: This study indicates the potential of the implemented CON and ECC protocols of pedaling-type interval exercise to improve oxygen metabolism of exercised muscle groups while maintaining or even increasing the Ppeak. The ECC training protocol seemingly provided a lower cardiovascular stimulus in patients with CAD while specifically enhancing the reoxygenation and blood lactate clearance in recruited muscle groups during recovery from exercise.

Trial registration: ClinicalTrials.gov NCT02845063; https://ichgcp.net/clinical-trials-registry/NCT02845063.

Keywords: cardiovascular rehabilitation; concentric and eccentric exercise; high-intensity interval training; muscle oxygen saturation; near-infrared spectroscopy; peak oxygen uptake; ramp test; skeletal muscle power; soft robot.

Conflict of interest statement

Conflicts of Interest: None declared.

©Daniel P Fitze, Martino Franchi, Werner L Popp, Severin Ruoss, Silvio Catuogno, Karin Camenisch, Debora Lehmann, Christian M Schmied, David Niederseer, Walter O Frey, Martin Flück. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 27.03.2019.

Figures

Figure 1
Figure 1
The study design timeline. CON: concentric protocol; ECC: eccentric protocol; PRE: before training period; POST: after training period; VO2peak: peak oxygen uptake; Ppeak: peak aerobic power output; HR: heart rate; BP: blood pressure; BL: blood lactate; NIRS: near-infrared spectroscopy; SmO2: muscle oxygen saturation.
Figure 2
Figure 2
Moxy monitor placement.
Figure 3
Figure 3
Top: Display of the audiovisual feedback to control training on the soft robot. Bottom: Timeline for the progressive increase of training volume and intensity for the CON and ECC protocol, respectively. ROM: range of motion; CON: concentric protocol; ECC: eccentric protocol; Ppeak: peak power output (Source: Daniel Fitze, Dynamic Devices AG).
Figure 4
Figure 4
Left: Display of the visual feedback during the Real Power test on the soft robot. Blue and red lines, the knee joint flexion angle of the left and right leg versus time. Right: Display of the visual feedback during the Reactive Power test on the soft robot (source: Daniel Fitze, Dynamic Devices AG).
Figure 5
Figure 5
The representative example of the SmO2 course during the ramp test of a healthy subject including raw data, processed data, and different parameters. SmO2: muscle oxygen saturation; t: time; min: minimum; max: maximum.
Figure 6
Figure 6
Training-induced changes of cardiorespiratory parameters in the first 2 patients completing the CON or ECC protocols. Bar graph of the percentage changes after versus before the training period (ie, POST vs PRE). VO2peak: peak oxygen uptake; Ppeak: peak aerobic power output; HRpeak: peak heart rate; Sys BPpeak: peak systolic blood pressure; Dia BPpeak: peak diastolic blood pressure; BLpeak: peak blood lactate concentration.
Figure 7
Figure 7
Training-induced changes of SmO2 parameters in the first 2 patients completing the respective CON or ECC protocols. Bar graph of the percentage changes POST versus PRE. SmO2: muscle oxygen saturation; t: time; min: minimum; max: maximum.
Figure 8
Figure 8
Training-induced changes of the muscle performance on the soft robot for patients completing the respective CON or ECC protocols. Bar graph of the percentage changes POST (after the training period) versus PRE (before the training period). CON: concentric protocol; ECC: eccentric protocol; Avg: average; tpeak: time to peak.

References

    1. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016 Dec 07;37(42):3232–3245. doi: 10.1093/eurheartj/ehw334.
    1. Federal Statistical Office . Statistisches Jahrbuch der Schweiz 2014. Zürich: Neue Zürcher Zeitung; 2014. Diagnose bei Hospitalisierung; p. 338.
    1. Federal Statistic Office . Statistisches Jahrbuch der Schweiz 2014. Zürich: Neue Zürcher Zeitung; 2014. Sterbefälle wichtiger Todesursachen; pp. 327–332.
    1. Hansson G. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005 Apr 21;352(16):1685–95. doi: 10.1056/NEJMra043430.
    1. Herz Statistik 2016. Bottmingen, Switzerland: Swiss Heart Foundation; 2016. [2018-12-17]. Zahlen und Daten über Herz-Kreislauf-Krankheiten in der Schweiz .
    1. Jolliffe J, Rees K, Taylor R, Thompson D, Oldridge N, Ebrahim S. Exercise-based rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2001;(1):CD001800. doi: 10.1002/14651858.CD001800.
    1. Iestra J, Kromhout D, van der Schouw Y T, Grobbee D, Boshuizen H, van Staveren W A. Effect size estimates of lifestyle and dietary changes on all-cause mortality in coronary artery disease patients: a systematic review. Circulation. 2005 Aug 09;112(6):924–34. doi: 10.1161/CIRCULATIONAHA.104.503995.
    1. Swift D, Lavie C, Johannsen N, Arena Ross, Earnest Conrad P, O'Keefe James H, Milani Richard V, Blair Steven N, Church Timothy S. Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J. 2013;77(2):281–92.
    1. Vanhees L, Geladas N, Hansen D, Kouidi E, Niebauer J, Reiner Z, Cornelissen V, Adamopoulos S, Prescott E, Börjesson M, Bjarnason-Wehrens B, Björnstad H H, Cohen-Solal A, Conraads V, Corrado D, De Sutter J, Doherty P, Doyle F, Dugmore D, Ellingsen Ø, Fagard R, Giada F, Gielen S, Hager A, Halle M, Heidbüchel H, Jegier A, Mazic S, McGee H, Mellwig K P, Mendes M, Mezzani A, Pattyn N, Pelliccia A, Piepoli M, Rauch B, Schmidt-Trucksäss A, Takken T, van Buuren F, Vanuzzo D. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR. Part II. Eur J Prev Cardiol. 2012 Oct;19(5):1005–33. doi: 10.1177/1741826711430926.
    1. Niederseer D, Niebauer J. Körperliches Training als integraler Bestandteil der Leitlinien-basierten Therapie der koronaren Herzkrankheit. Journal für Kardiologie-Austrian Journal of Cardiology. 2009;16(9):327–332.
    1. Piepoli Massimo F, Hoes Arno W, Agewall Stefan, Albus Christian, Brotons Carlos, Catapano Alberico L, Cooney Marie-Therese, Corrà Ugo, Cosyns Bernard, Deaton Christi, Graham Ian, Hall Michael Stephen, Hobbs F D Richard, Løchen Maja-Lisa, Löllgen Herbert, Marques-Vidal Pedro, Perk Joep, Prescott Eva, Redon Josep, Richter Dimitrios J, Sattar Naveed, Smulders Yvo, Tiberi Monica, Bart van der Worp H, van Dis Ineke, Verschuren W M Monique. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR) Atherosclerosis. 2016 Dec;252:207–274. doi: 10.1016/j.atherosclerosis.2016.05.037.
    1. Ribeiro P, Boidin M, Juneau M, Nigam A, Gayda M. High-intensity interval training in patients with coronary heart disease: Prescription models and perspectives. Ann Phys Rehabil Med. 2017 Jan;60(1):50–57. doi: 10.1016/j.rehab.2016.04.004.
    1. Gibala M, Little J, Macdonald Maureen J, Hawley J. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012 Mar 01;590(5):1077–84. doi: 10.1113/jphysiol.2011.224725. doi: 10.1113/jphysiol.2011.224725.
    1. Rognmo Ø, Hetland E, Helgerud J, Hoff J, Slørdahl Stig A. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil. 2004 Jun;11(3):216–22.
    1. Wisløff Ulrik, Støylen Asbjørn, Loennechen J, Bruvold Morten, Rognmo Øivind, Haram Per Magnus, Tjønna Arnt Erik, Helgerud Jan, Slørdahl Stig A, Lee Sang Jun, Videm Vibeke, Bye Anja, Smith Godfrey L, Najjar Sonia M, Ellingsen Øyvind, Skjaerpe Terje. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007 Jun 19;115(24):3086–94. doi: 10.1161/CIRCULATIONAHA.106.675041.
    1. Gayda M, Ribeiro P, Juneau M, Nigam A. Comparison of Different Forms of Exercise Training in Patients With Cardiac Disease: Where Does High-Intensity Interval Training Fit? Can J Cardiol. 2016 Apr;32(4):485–94. doi: 10.1016/j.cjca.2016.01.017.
    1. Vanhees L, Fagard R, Thijs L, Staessen J, Amery A. Prognostic significance of peak exercise capacity in patients with coronary artery disease. J Am Coll Cardiol. 1994 Feb;23(2):358–63.
    1. Blair S, Barlow C, Paffenbarger JR, Gibbons L. Cardiovascular Disease and All-Cause Mortality in Men and Women. Jama. 1996;276:205–210.
    1. Aspenes S, Nilsen T, Skaug Eli-Anne, Bertheussen Gro F, Ellingsen Øyvind, Vatten Lars, Wisløff Ulrik. Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men. Med Sci Sports Exerc. 2011 Aug;43(8):1465–73. doi: 10.1249/MSS.0b013e31820ca81c.
    1. LaStayo P, Marcus R, Dibble L, Frajacomo F, Lindstedt S. Eccentric exercise in rehabilitation: safety, feasibility, and application. J Appl Physiol (1985) 2014 Jun 01;116(11):1426–34. doi: 10.1152/japplphysiol.00008.2013.
    1. Mitchell W, Taivassalo T, Narici M, Franchi M. Eccentric Exercise and the Critically Ill Patient. Front Physiol. 2017;8:120. doi: 10.3389/fphys.2017.00120. doi: 10.3389/fphys.2017.00120.
    1. Katz B. The relation between force and speed in muscular contraction. J Physiol. 1939 Jun 14;96(1):45–64.
    1. Bigland-Ritchie B, Woods J. Integrated electromyogram and oxygen uptake during positive and negative work. J Physiol. 1976 Sep;260(2):267–77.
    1. Franchi M, Reeves N, Narici M. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations. Front Physiol. 2017;8:447. doi: 10.3389/fphys.2017.00447. doi: 10.3389/fphys.2017.00447.
    1. LaStayo P, Woolf J, Lewek M, Snyder-Mackler L, Reich T, Lindstedt S. Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther. 2003 Oct;33(10):557–71. doi: 10.2519/jospt.2003.33.10.557.
    1. Lindstedt S, LaStayo P, Reich T. When active muscles lengthen: properties and consequences of eccentric contractions. News Physiol Sci. 2001 Dec;16:256–61.
    1. Hoppeler H. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality. Front Physiol. 2016;7:483. doi: 10.3389/fphys.2016.00483. doi: 10.3389/fphys.2016.00483.
    1. Flück Martin, Bosshard R, Lungarella M. Cardiovascular and Muscular Consequences of Work-Matched Interval-Type of Concentric and Eccentric Pedaling Exercise on a Soft Robot. Front Physiol. 2017;8:640. doi: 10.3389/fphys.2017.00640. doi: 10.3389/fphys.2017.00640.
    1. . 2016. Jul 16, [2018-12-19]. Effect of ACE Genotype on Cardiovascular Rehabilitation (ACE-REHAB) .
    1. Whipp B, Davis J, Torres F, Wasserman K. A test to determine parameters of aerobic function during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1981 Jan;50(1):217–21. doi: 10.1152/jappl.1981.50.1.217.
    1. Fortiori Design Introduction to Muscle Oxygen Monitoring with Moxy. [2018-12-17]. Muscle Oxygen .
    1. Ferrari M, Muthalib M, Quaresima V. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4577–90. doi: 10.1098/rsta.2011.0230.
    1. McPhee J, French D, Jackson D, Nazroo J, Pendleton Neil, Degens Hans. Physical activity in older age: perspectives for healthy ageing and frailty. Biogerontology. 2016 Dec;17(3):567–80. doi: 10.1007/s10522-016-9641-0.
    1. Warburton D, McKenzie D, Haykowsky M, Taylor Arlana, Shoemaker Paula, Ignaszewski Andrew P, Chan Sammy Y. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol. 2005 May 01;95(9):1080–4. doi: 10.1016/j.amjcard.2004.12.063.
    1. Currie K, Dubberley J, McKelvie Robert S, MacDonald M. Low-volume, high-intensity interval training in patients with CAD. Med Sci Sports Exerc. 2013 Aug;45(8):1436–42. doi: 10.1249/MSS.0b013e31828bbbd4.
    1. Guiraud T, Nigam A, Gremeaux V, Meyer P, Juneau M, Bosquet L. High-intensity interval training in cardiac rehabilitation. Sports Med. 2012 Jul 01;42(7):587–605. doi: 10.2165/11631910-000000000-00000.
    1. Muthalib M, Millet G, Quaresima V, Nosaka K. Reliability of near-infrared spectroscopy for measuring biceps brachii oxygenation during sustained and repeated isometric contractions. J Biomed Opt. 2010;15(1):017008. doi: 10.1117/1.3309746.
    1. Takagi S, Murase N, Kime R, Niwayama M, Osada T, Katsumura T. Skeletal muscle deoxygenation abnormalities in early post-myocardial infarction. Med Sci Sports Exerc. 2014 Nov;46(11):2062–9. doi: 10.1249/MSS.0000000000000334.
    1. Takagi S, Murase N, Kime R, Niwayama M, Osada T, Katsumura T. Aerobic training enhances muscle deoxygenation in early post-myocardial infarction. Eur J Appl Physiol. 2016 Apr;116(4):673–85. doi: 10.1007/s00421-016-3326-x.
    1. Bassett JD, Howley E. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000 Jan;32(1):70–84.
    1. Reid K, Fielding R. Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev. 2012 Jan;40(1):4–12. doi: 10.1097/JES.0b013e31823b5f13.
    1. Isner-Horobeti M, Dufour S, Vautravers P, Geny B, Coudeyre E, Richard R. Eccentric exercise training: modalities, applications and perspectives. Sports Med. 2013 Jun;43(6):483–512. doi: 10.1007/s40279-013-0052-y.
    1. LaStayo P, Pierotti D, Pifer J, Hoppeler H, Lindstedt S. Eccentric ergometry: increases in locomotor muscle size and strength at low training intensities. Am J Physiol Regul Integr Comp Physiol. 2000 May;278(5):R1282–8. doi: 10.1152/ajpregu.2000.278.5.R1282.
    1. Desplanches D, Amami M, Dupré-Aucouturier Sylvie, Valdivieso P, Schmutz S, Mueller M, Hoppeler H, Kreis R, Flück Martin. Hypoxia refines plasticity of mitochondrial respiration to repeated muscle work. Eur J Appl Physiol. 2014 Feb;114(2):405–17. doi: 10.1007/s00421-013-2783-8.

Source: PubMed

3
Abonnieren