Developmental Differences in Left Ventricular Strain in IUGR vs. Control Children the First Three Months of Life

Olov Änghagen, Jan Engvall, Tomas Gottvall, Nina Nelson, Eva Nylander, Peter Bang, Olov Änghagen, Jan Engvall, Tomas Gottvall, Nina Nelson, Eva Nylander, Peter Bang

Abstract

Background: Intrauterine growth restriction (IUGR) may directly affect cardiovascular function in early life. Longitudinal data on left ventricular longitudinal strain (LVLS), a key measure of cardiac function independent of body size, is not available. We hypothesize impaired cardiac function among IUGR newborns and persistence of the impairment until age 3 months.

Method: This is a prospective cohort study of consecutive pregnancies where IUGR was identified at 18-38 weeks gestational age (GA) with healthy controls randomly selected at 18-20 weeks GA. Echocardiograms were performed at birth and at age 3-4 months, and then compared.

Results: At birth, mean (SD) LVLS did not differ between the IUGR group [N = 19; - 15.76 (3.12) %] and controls [N = 35; - 15.53 (3.56) %]. The IUGR group demonstrated no significant change in LVLS at age 3-4 months [- 17.80 (3.82) %], while the control group [- 20.91 (3.31) %] showed a significant increase (P < 0.001). Thus, LVLS was lower in the IUGR group at age 3-4 months (P = 0.003).

Conclusion: The lack of increase in LVLS may suggest that IUGR has a direct impact on cardiac function as early as during the first months of life. Trial registration Clinical trials.gov Identifier: NCT02583763, registration October 22, 2015. Retrospectively registered September 2014-October 2015, thereafter, registered prospectively.

Keywords: Cardiac function; Cardiac strain; Fetal growth retardation (FGR); Infant; Intra-uterine growth restriction (IUGR).

Conflict of interest statement

Authors declare that they have no conflict of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flow diagram of progress throughout the study
Fig. 2
Fig. 2
a Change in left ventricular longitudinal strain (LVLS) in relation to gestationally corrected age (GCA), IUGR. b Change in left ventricular longitudinal strain (LVLS) in relation to gestationally corrected age (GCA), Controls

References

    1. Barker DJP (2008) Human growth and cardiovascular disease. In: Nestle nutrition workshop series: pediatric program. KARGER, Basel, Switzerland. pp 21–33
    1. Veening MA, Van Weissenbruch MM, De Delemarre-Van Waal HA. Glucose tolerance, insulin sensitivity, and insulin secretion in children born small for gestational age. J Clin Endocrinol Metab. 2002;87:4657–4661. doi: 10.1210/jc.2001-011940.
    1. Cohen E, Wong FY, Horne RSCSSC, Yiallourou SR. Intrauterine growth restriction: impact on cardiovascular development and function throughout infancy. Pediatr Res. 2016;79:821–830. doi: 10.1038/pr.2016.24.
    1. Cohen E, Whatley C, Wong FY, et al. Effects of foetal growth restriction and preterm birth on cardiac morphology and function during infancy. Acta Paediatr. 2018;107:450–455. doi: 10.1111/apa.14144.
    1. Mohlkert L-AA, Hallberg J, Broberg O, et al. The preterm heart in childhood: left ventricular structure, geometry, and function assessed by echocardiography in 6-year-old survivors of periviable births. J Am Heart Assoc. 2018;7:1–9. doi: 10.1161/JAHA.117.007742.
    1. Karvonen R, Sipola M, Kiviniemi A, et al. Cardiac autonomic function in adults born preterm. J Pediatr. 2019;208:96–103.e4. doi: 10.1016/j.jpeds.2018.12.061.
    1. Bensley JG, De Matteo R, Harding R, Black MJ. The effects of preterm birth and its antecedents on the cardiovascular system. Acta Obstet Gynecol Scand. 2016;95:652–663. doi: 10.1111/aogs.12880.
    1. Carr H, Cnattingius S, Granath F, et al. Preterm birth and risk of heart failure up to early adulthood. J Am Coll Cardiol. 2017;69:2634–2642. doi: 10.1016/j.jacc.2017.03.572.
    1. Kajantie E, Osmond C, Eriksson JG. Coronary heart disease and stroke in adults born preterm—the Helsinki birth cohort study. Paediatr Perinat Epidemiol. 2015;29:515–519. doi: 10.1111/ppe.12219.
    1. Rodriguez-Guerineau L, Perez-Cruz M, Gomez Roig MD, et al. Cardiovascular adaptation to extrauterine life after intrauterine growth restriction. Cardiol Young. 2018;28:284–291. doi: 10.1017/S1047951117001949.
    1. Sehgal A, Allison BJ, Gwini SM, et al. Cardiac morphology and function in preterm growth restricted infants: relevance for clinical sequelae. J Pediatr. 2017;188:128–134.e2. doi: 10.1016/j.jpeds.2017.05.076.
    1. Cruz-Lemini M, Crispi F, Valenzuela-Alcaraz B, et al. Fetal cardiovascular remodeling persists at 6 months in infants with intrauterine growth restriction. Ultrasound Obstet Gynecol. 2016;48:349–356. doi: 10.1002/uog.15767.
    1. Sarvari SI, Rodriguez-Lopez M, Nuñez-Garcia M, et al. Persistence of cardiac remodeling in preadolescents with fetal growth restriction. Circ Cardiovasc Imaging. 2017 doi: 10.1161/CIRCIMAGING.116.005270.
    1. Fouzas S, Karatza AA, Davlouros PA, et al. Neonatal cardiac dysfunction in intrauterine growth restriction. Pediatr Res. 2014;75:651–657. doi: 10.1038/pr.2014.22.
    1. Patey O, Carvalho JS, Thilaganathan B. Perinatal changes in cardiac geometry and function in growth-restricted fetuses at term. Ultrasound Obstet Gynecol. 2019 doi: 10.1002/uog.19193.
    1. van Oostrum NHM, Derks K, van der Woude DAA, et al. Two-dimensional speckle tracking echocardiography in fetal growth restriction: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2020;254:87–94. doi: 10.1016/j.ejogrb.2020.08.052.
    1. Crispi F, Bijnens B, Sepulveda-Swatson E, et al. Postsystolic shortening by myocardial deformation imaging as a sign of cardiac adaptation to pressure overload in fetal growth restriction. Circ Cardiovasc Imaging. 2014;7:781–787. doi: 10.1161/CIRCIMAGING.113.001490.
    1. Geyer H, Caracciolo G, Abe H, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23:351–369. doi: 10.1016/j.echo.2010.02.015.
    1. Luis SA, Chan J, Pellikka PA. Echocardiographic assessment of left ventricular systolic function: an overview of contemporary techniques, including speckle-tracking echocardiography. Mayo Clin Proc. 2019;94:125–138. doi: 10.1016/j.mayocp.2018.07.017.
    1. Tops LF, Delgado V, Marsan NA, Bax JJ. Myocardial strain to detect subtle left ventricular systolic dysfunction. Eur J Heart Fail. 2017;19:307–313. doi: 10.1002/ejhf.694.
    1. Akazawa Y, Hachiya A, Yamazaki S, Kawasaki Y, Nakamura C, Takeuchi Y, Kusakari M, Miyosawa Y, Kamiya M, Motoki N, Koike K, et al. Cardiovascular remodeling and dysfunction across a range of growth restriction severity in small for gestational age infants—implications for fetal programming. Circ J. 2016;80:2212–2220. doi: 10.1253/circj.CJ-16-0352.
    1. James AT, Corcoran JD, Breatnach CR, et al. Longitudinal assessment of left and right myocardial function in preterm infants using strain and strain rate imaging. Neonatology. 2015;109:69–75. doi: 10.1159/000440940.
    1. Clavero Adell M, Ayerza Casas A, Jiménez Montañés L, et al. Evolution of strain and strain rate values throughout gestation in healthy fetuses. Int J Cardiovasc Imaging. 2020;36:59–66. doi: 10.1007/s10554-019-01695-6.
    1. Khan U, Omdal TR, Matre K, Greve G. What is left ventricular strain in healthy neonates? A systematic review and meta-analysis. Pediatr Cardiol. 2020;41:1–11. doi: 10.1007/s00246-019-02219-8.
    1. Levy PT, Machefsky A, Sanchez AA, et al. Reference ranges of left ventricular strain measures by two-dimensional speckle-tracking echocardiography in children: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2016;29:209–225.e6. doi: 10.1016/j.echo.2015.11.016.
    1. Koopman LP, Rebel B, Gnanam D, et al. Reference values for two-dimensional myocardial strain echocardiography of the left ventricle in healthy children. Cardiol Young. 2019;29:325–337. doi: 10.1017/S1047951118002378.
    1. Maršál K, Persson P-H, Larsen T, et al. Intrauterine growth curves based on ultrasonically estimated foetal weights. Acta Paediatr. 1996;85:843–848. doi: 10.1111/j.1651-2227.1996.tb14164.x.
    1. Voigt JU, Pedrizzetti G, Lysyansky P, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2015;16:1–11. doi: 10.1093/ehjci/jeu184.
    1. Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am J Cardiol. 1986;57:450–458. doi: 10.1016/0002-9149(86)90771-X.
    1. Niklasson A, Albertsson-Wikland K. Continuous growth reference from 24thweek of gestation to 24 months by gender. BMC Pediatr. 2008;8:8. doi: 10.1186/1471-2431-8-8.
    1. Comas M, Crispi F, Cruz-Martinez R, et al. Usefulness of myocardial tissue Doppler vs conventional echocardiography in the evaluation of cardiac dysfunction in early-onset intrauterine growth restriction. Am J Obstet Gynecol. 2010;203:45.e1–45.e7. doi: 10.1016/j.ajog.2010.02.044.
    1. Larsen LU, Sloth E, Petersen OB, et al. Systolic myocardial velocity alterations in the growth-restricted fetus with cerebroplacental redistribution. Ultrasound Obstet Gynecol. 2009;34:62–67. doi: 10.1002/uog.6375.
    1. Lackman F, Capewell V, Richardson B, et al. The risks of spontaneous preterm delivery and perinatal mortality in relation to size at birth according to fetal versus neonatal growth standards. Am J Obstet Gynecol. 2001;184:946–953. doi: 10.1067/mob.2001.111719.
    1. Schubert U, Müller M, Abdul-Khaliq H, Norman M. Preterm birth is associated with altered myocardial function in infancy. J Am Soc Echocardiogr. 2016;29:670–678. doi: 10.1016/j.echo.2016.03.011.
    1. Lewandowski AJ, Augustine D, Lamata P, et al. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127:197–206. doi: 10.1161/CIRCULATIONAHA.112.126920.
    1. Barker DJP. The developmental origins of well-being. Philos Trans R Soc B. 2004;359:1359–1366. doi: 10.1098/rstb.2004.1518.
    1. Eriksson JG, Forsen T, Tuomilehto J, et al. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ. 1999;318:427–431. doi: 10.1136/bmj.318.7181.427.
    1. Hindmarsh PC, Bryan S, Geary MPP, Cole TJ. Effects of current size, postnatal growth, and birth size on blood pressure in early childhood. Pediatrics. 2010 doi: 10.1542/peds.2010-0358.
    1. Darendeliler F. IUGR: Genetic influences, metabolic problems, environmental associations/triggers, current and future management. Best Pract Res Clin Endocrinol Metab. 2019;33:101260. doi: 10.1016/j.beem.2019.01.001.
    1. Ong KK, Ahmed ML, Emmett PM, et al. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000;320:967–971. doi: 10.1136/bmj.320.7240.967.
    1. Albertsson-Wikland K, Karlberg J. Postnatal growth of children born small for gestational age. Acta Paediatr. 1997;86:193–195. doi: 10.1111/j.1651-2227.1997.tb18413.x.
    1. Huh J, Kwon JY, Kim HR, et al. Comparison of postnatal catch-up growth according to definitions of small for gestational age infants. Korean J Pediatr. 2018;61:71. doi: 10.3345/kjp.2018.61.3.71.

Source: PubMed

3
Abonnieren