Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory

Joseph M Benoun, Jasmine C Labuda, Stephen J McSorley, Joseph M Benoun, Jasmine C Labuda, Stephen J McSorley

Abstract

Antibiotic intervention is an effective treatment strategy for many bacterial infections and liberates bacterial antigens and stimulatory products that can induce an inflammatory response. Despite the opportunity for bacterial killing to enhance the development of adaptive immunity, patients treated successfully with antibiotics can suffer from reinfection. Studies in mouse models of Salmonella and Chlamydia infection also demonstrate that early antibiotic intervention reduces host protective immunity to subsequent infection. This heightened susceptibility to reinfection correlates with poor development of Th1 and antibody responses in antibiotic-treated mice but can be overcome by delayed antibiotic intervention, thus suggesting a requirement for sustained T cell stimulation for protection. Although the contribution of memory T cell subsets is imperfectly understood in both of these infection models, a protective role for noncirculating memory cells is suggested by recent studies. Together, these data propose a model where antibiotic treatment specifically interrupts tissue-resident memory T cell formation. Greater understanding of the mechanistic basis of this phenomenon might suggest therapeutic interventions to restore a protective memory response in antibiotic-treated patients, thus reducing the incidence of reinfection.

Copyright © 2016 Benoun et al.

Figures

FIG 1
FIG 1
Antibiotic treatment reduces the development of T cell memory. Primary bacterial infection initiates the expansion of T cells that aid in clearance of the bacteria, leaving a pool of memory T cells behind. Upon secondary infection, these memory cells have acquired effector potential and can eliminate bacteria rapidly. Antibiotic treatment of primary infection truncates T cell expansion and limits memory cell development, preventing an effective response to secondary infection.

References

    1. Aminov RI. 2010. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134. doi:10.3389/fmicb.2010.00134.
    1. Abraham EP, Chain E. 1988. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis 10:677–678.
    1. Bigger JW. 1944. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244:497–500. doi:10.1016/S0140-6736(00)74210-3.
    1. Ikram R, Psutka R, Carter A, Priest P. 2015. An outbreak of multi-drug resistant Escherichia coli urinary tract infection in an elderly population: a case-control study of risk factors. BMC Infect Dis 15:224. doi:10.1186/s12879-015-0974-0.
    1. Schrag SJ, McGee L, Whitney CG, Beall B, Craig AS, Choate ME, Jorgensen JH, Facklam RR, Klugman KP, Active Bacterial Core Surveillance Team . 2004. Emergence of Streptococcus pneumoniae with very-high-level resistance to penicillin. Antimicrob Agents Chemother 48:3016–3023. doi:10.1128/AAC.48.8.3016-3023.2004.
    1. Nathan C. 2004. Antibiotics at the crossroads. Nature 431:899–902. doi:10.1038/431899a.
    1. Jenkins MK, Khoruts A, Ingulli E, Mueller DL, McSorley SJ, Reinhardt RL, Itano A, Pape KA. 2001. In vivo activation of antigen-specific CD4 T cells. Annu Rev Immunol 19:23–45. doi:10.1146/annurev.immunol.19.1.23.
    1. Iwasaki A, Medzhitov R. 2015. Control of adaptive immunity by the innate immune system. Nat Immunol 16:343–353. doi:10.1038/ni.3123.
    1. Jenkins MK, Moon JJ. 2012. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J Immunol 188:4135–4140. doi:10.4049/jimmunol.1102661.
    1. McSorley SJ. 2014. Immunity to intestinal pathogens: lessons learned from Salmonella. Immunol Rev 260:168–182. doi:10.1111/imr.12184.
    1. Verver S, Warren RM, Beyers N, Richardson M, van der Spuy GD, Borgdorff MW, Enarson DA, Behr MA, van Helden PD. 2005. Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am J Respir Crit Care Med 171:1430–1435. doi:10.1164/rccm.200409-1200OC.
    1. Brunham RC, Rekart ML. 2008. The arrested immunity hypothesis and the epidemiology of chlamydia control. Sex Transm Dis 35:53–54. doi:10.1097/OLQ.0b013e31815e41a3.
    1. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. 2015. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 28:901–937. doi:10.1128/CMR.00002-15.
    1. Santos RL, Zhang S, Tsolis RM, Kingsley RA, Adams LG, Bäumler AJ. 2001. Animal models of salmonella infections: enteritis versus typhoid fever. Microbes Infect 3:1335–1344. doi:10.1016/S1286-4579(01)01495-2.
    1. Keestra-Gounder AM, Tsolis RM, Bäumler AJ. 2015. Now you see me, now you don’t: the interaction of Salmonella with innate immune receptors. Nat Rev Microbiol 13:206–216. doi:10.1038/nrmicro3428.
    1. Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. 2002. Typhoid fever. N Engl J Med 347:1770–1782. doi:10.1056/NEJMra020201.
    1. Kariuki S, Gordon MA, Feasey N, Parry CM. 2015. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 33(Suppl 3):C21–C29. doi:10.1016/j.vaccine.2015.03.102.
    1. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, Stevens G, Gottlieb S, Kiarie J, Temmerman M. 2015. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 10:e0143304. doi:10.1371/journal.pone.0143304.
    1. Centers for Disease Control and Prevention 2015. Sexually transmitted disease surveillance 2014. CDC, Atlanta, GA: .
    1. Owusu-Edusei K Jr, Doshi SR, Apt BS, Gift TL. 2010. The direct cost of chlamydial infections: estimates for the employer-sponsored privately insured population in the United States, 2003-2007. Sex Transm Dis 37:519–521. doi:10.1097/OLQ.0b013e3181d73e4c.
    1. Molano M, Meijer CJ, Weiderpass E, Arslan A, Posso H, Franceschi S, Ronderos M, Muñoz N, van den Brule AJ. 2005. The natural course of Chlamydia trachomatis infection in asymptomatic Colombian women: a 5-year follow-up study. J Infect Dis 191:907–916. doi:10.1086/428287.
    1. Hillis SD, Owens LM, Marchbanks PA, Amsterdam LF, Mac Kenzie WR. 1997. Recurrent chlamydial infections increase the risks of hospitalization for ectopic pregnancy and pelvic inflammatory disease. Am J Obstet Gynecol 176:103–107. doi:10.1016/S0002-9378(97)80020-8.
    1. Brunham RC, Gottlieb SL, Paavonen J. 2015. Pelvic inflammatory disease. N Engl J Med 372:2039–2048. doi:10.1056/NEJMra1411426.
    1. Brunham RC, Pourbohloul B, Mak S, White R, Rekart ML. 2005. The unexpected impact of a Chlamydia trachomatis infection control program on susceptibility to reinfection. J Infect Dis 192:1836–1844. doi:10.1086/497341.
    1. Gottlieb SL, Martin DH, Xu F, Byrne GI, Brunham RC. 2010. Summary: the natural history and immunobiology of Chlamydia trachomatis genital infection and implications for chlamydia control. J Infect Dis 201(Suppl 2):S190–S204. doi:10.1086/652401.
    1. Centers for Disease Control and Prevention 2013. Sexually transmitted disease surveillance 2012. CDC, Atlanta, GA; .
    1. Gottlieb SL, Xu F, Brunham RC. 2013. Screening and treating Chlamydia trachomatis genital infection to prevent pelvic inflammatory disease: interpretation of findings from randomized controlled trials. Sex Transm Dis 40:97–102. doi:10.1097/OLQ.0b013e31827bd637.
    1. Hosenfeld CB, Workowski KA, Berman S, Zaidi A, Dyson J, Mosure D, Bolan G, Bauer HM. 2009. Repeat infection with chlamydia and gonorrhea among females: a systematic review of the literature. Sex Transm Dis 36:478–489. doi:10.1097/OLQ.0b013e3181a2a933.
    1. Geisler WM, Lensing SY, Press CG, Hook EW. 2013. Spontaneous resolution of genital Chlamydia trachomatis infection in women and protection from reinfection. J Infect Dis 207:1850–1856. doi:10.1093/infdis/jit094.
    1. Vicetti Miguel RD, Reighard SD, Chavez JM, Rabe LK, Maryak SA, Wiesenfeld HC, Cherpes TL. 2012. Transient detection of chlamydial-specific Th1 memory cells in the peripheral circulation of women with history of Chlamydia trachomatis genital tract infection. Am J Reprod Immunol 68:499–506. doi:10.1111/aji.12008.
    1. Généeux M, Leclerc P, Bédard L, Allard R. 2010. Upsurge of chlamydial reinfection in a large Canadian city: an indication of suboptimal chlamydia screening practices? Can J Public Health 101:420–424.
    1. Farris CM, Morrison RP. 2011. Vaccination against chlamydia genital infection utilizing the murine C. muridarum model. Infect Immun 79:986–996. doi:10.1128/IAI.00881-10.
    1. Griffin AJ, McSorley SJ. 2011. Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda. Mucosal Immunol 4:371–382. doi:10.1038/mi.2011.2.
    1. Johnson RM, Brunham RC. 2016. Tissue-resident T cells as the central paradigm of chlamydia immunity. Infect Immun 84:868–873. doi:10.1128/IAI.01378-15.
    1. Hess J, Ladel C, Miko D, Kaufmann SH. 1996. Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol 156:3321–3326.
    1. Ravindran R, Foley J, Stoklasek T, Glimcher LH, McSorley SJ. 2005. Expression of T-bet by CD4 T cells is essential for resistance to Salmonella infection. J Immunol 175:4603–4610. doi:10.4049/jimmunol.175.7.4603.
    1. Lee SJ, Dunmire S, McSorley SJ. 2012. MHC class-I-restricted CD8 T cells play a protective role during primary Salmonella infection. Immunol Lett 148:138–143. doi:10.1016/j.imlet.2012.10.009.
    1. McSorley SJ, Jenkins MK. 2000. Antibody is required for protection against virulent but not attenuated Salmonella enterica serovar Typhimurium. Infect Immun 68:3344–3348. doi:10.1128/IAI.68.6.3344-3348.2000.
    1. Mastroeni P, Simmons C, Fowler R, Hormaeche CE, Dougan G. 2000. Igh-6(−/-) (B-cell-deficient) mice fail to mount solid acquired resistance to oral challenge with virulent Salmonella enterica serovar Typhimurium and show impaired Th1 T-cell responses to Salmonella antigens. Infect Immun 68:46–53. doi:10.1128/IAI.68.1.46-53.2000.
    1. Morrison RP, Feilzer K, Tumas DB. 1995. Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infect Immun 63:4661–4668.
    1. Perry LL, Feilzer K, Caldwell HD. 1997. Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent and -independent pathways. J Immunol 158:3344–3352.
    1. Su H, Feilzer K, Caldwell HD, Morrison RP. 1997. Chlamydia trachomatis genital tract infection of antibody-deficient gene knockout mice. Infect Immun 65:1993–1999.
    1. Li LX, McSorley SJ. 2013. B cells enhance antigen-specific CD4 T cell priming and prevent bacteria dissemination following Chlamydia muridarum genital tract infection. PLoS Pathog 9:e1003707. doi:10.1371/journal.ppat.1003707.
    1. Nanton MR, Way SS, Shlomchik MJ, McSorley SJ. 2012. Cutting edge: B cells are essential for protective immunity against Salmonella independent of antibody secretion. J Immunol 189:5503–5507. doi:10.4049/jimmunol.1201413.
    1. Morrison SG, Morrison RP. 2005. A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. J Immunol 175:7536–7542. doi:10.4049/jimmunol.175.11.7536.
    1. Jameson SC, Masopust D. 2009. Diversity in T cell memory: an embarrassment of riches. Immunity 31:859–871. doi:10.1016/j.immuni.2009.11.007.
    1. Carbone FR. 2015. Tissue-resident memory T cells and fixed immune surveillance in nonlymphoid organs. J Immunol 195:17–22. doi:10.4049/jimmunol.1500515.
    1. Turner DL, Farber DL. 2014. Mucosal resident memory CD4 T cells in protection and immunopathology. Front Immunol 5:331. doi:10.3389/fimmu.2014.00331.
    1. Stary G, Olive A, Radovic-Moreno AF, Gondek D, Alvarez D, Basto PA, Perro M, Vrbanac VD, Tager AM, Shi J, Yethon JA, Farokhzad OC, Langer R, Starnbach MN, von Andrian UH. 2015. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348:aaa8205. doi:10.1126/science.aaa8205.
    1. Moon JJ, McSorley SJ. 2009. Tracking the dynamics of salmonella specific T cell responses. Curr Top Microbiol Immunol 334:179–198. doi:10.1007/978-3-540-93864-4_8.
    1. Broz P, Monack DM. 2011. Molecular mechanisms of inflammasome activation during microbial infections. Immunol Rev 243:174–190. doi:10.1111/j.1600-065X.2011.01041.x.
    1. Eisenstein TK, Killar LM, Sultzer BM. 1984. Immunity to infection with Salmonella typhimurium: mouse-strain differences in vaccine- and serum-mediated protection. J Infect Dis 150:425–435. doi:10.1093/infdis/150.3.425.
    1. Johanns TM, Law CY, Kalekar LA, O’Donnell H, Ertelt JM, Rowe JH, Way SS. 2011. Early eradication of persistent Salmonella infection primes antibody-mediated protective immunity to recurrent infection. Microbes Infect 13:322–330. doi:10.1016/j.micinf.2010.11.004.
    1. Dunstan SJ, Hue NT, Han B, Li Z, Tram TT, Sim KS, Parry CM, Chinh NT, Vinh H, Lan NP, Thieu NT, Vinh PV, Koirala S, Dongol S, Arjyal A, Karkey A, Shilpakar O, Dolecek C, Foo JN, Phuong le T, Lanh MN, Do T, Aung T, Hon DN, Teo YY, Hibberd ML, Anders KL, Okada Y, Raychaudhuri S, Simmons CP, Baker S, de Bakker PI, Basnyat B, Hien TT, Farrar JJ, Khor CC. 2014. Variation at HLA-DRB1 is associated with resistance to enteric fever. Nat Genet 46:1333–1336. doi:10.1038/ng.3143.
    1. Griffin A, Baraho-Hassan D, McSorley SJ. 2009. Successful treatment of bacterial infection hinders development of acquired immunity. J Immunol 183:1263–1270. doi:10.4049/jimmunol.0900772.
    1. Griffin AJ, McSorley SJ. 2011. Generation of Salmonella-specific Th1 cells requires sustained antigen stimulation. Vaccine 29:2697–2704. doi:10.1016/j.vaccine.2011.01.078.
    1. Maskell DJ, Hormaeche CE. 1985. Relapse following cessation of antibiotic therapy for mouse typhoid in resistant and susceptible mice infected with salmonellae of differing virulence. J Infect Dis 152:1044–1049. doi:10.1093/infdis/152.5.1044.
    1. Monack DM, Bouley DM, Falkow S. 2004. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med 199:231–241. doi:10.1084/jem.20031319.
    1. Helaine S, Thompson JA, Watson KG, Liu M, Boyle C, Holden DW. 2010. Dynamics of intracellular bacterial replication at the single cell level. Proc Natl Acad Sci U S A 107:3746–3751. doi:10.1073/pnas.1000041107.
    1. Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. 2014. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343:204–208. doi:10.1126/science.1244705.
    1. Claudi B, Spröte P, Chirkova A, Personnic N, Zankl J, Schürmann N, Schmidt A, Bumann D. 2014. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 158:722–733. doi:10.1016/j.cell.2014.06.045.
    1. Bueno SM, González PA, Schwebach JR, Kalergis AM. 2007. T cell immunity evasion by virulent Salmonella enterica. Immunol Lett 111:14–20. doi:10.1016/j.imlet.2007.05.003.
    1. Srinivasan A, Nanton M, Griffin A, McSorley SJ. 2009. Culling of activated CD4 T cells during typhoid is driven by Salmonella virulence genes. J Immunol 182:7838–7845. doi:10.4049/jimmunol.0900382.
    1. Bedoui S, Kupz A, Wijburg OL, Walduck AK, Rescigno M, Strugnell RA. 2010. Different bacterial pathogens, different strategies, yet the aim is the same: evasion of intestinal dendritic cell recognition. J Immunol 184:2237–2242. doi:10.4049/jimmunol.0902871.
    1. Obst R, van Santen HM, Mathis D, Benoist C. 2005. Antigen persistence is required throughout the expansion phase of a CD4(+) T cell response. J Exp Med 201:1555–1565. doi:10.1084/jem.20042521.
    1. Rabenstein H, Behrendt AC, Ellwart JW, Naumann R, Horsch M, Beckers J, Obst R.. 2014. Differential kinetics of antigen dependency of CD4+ and CD8+ T cells. J Immunol 192:3507–3517. doi:10.4049/jimmunol.1302725.
    1. Kaech SM, Ahmed R. 2001. Memory CD8 T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2:415–422. doi:10.1038/87720.
    1. Wong P, Pamer EG. 2001. Cutting edge: antigen-independent CD8 T cell proliferation. J Immunol 166:5864–5868. doi:10.4049/jimmunol.166.10.5864.
    1. Williams MA, Bevan MJ. 2004. Shortening the infectious period does not alter expansion of CD8 T cells but diminishes their capacity to differentiate into memory cells. J Immunol 173:6694–6702. doi:10.4049/jimmunol.173.11.6694.
    1. Roan NR, Starnbach MN. 2008. Immune-mediated control of chlamydia infection. Cell Microbiol 10:9–19. doi:10.1111/j.1462-5822.2007.01069.x.
    1. Schoborg RV. 2011. Chlamydia persistence—a tool to dissect chlamydia-host interactions. Microbes Infect 13:649–662. doi:10.1016/j.micinf.2011.03.004.
    1. Phillips Campbell R, Kintner J, Whittimore J, Schoborg RV. 2012. Chlamydia muridarum enters a viable but non-infectious state in amoxicillin-treated BALB/c mice. Microbes Infect 14:1177–1185. doi:10.1016/j.micinf.2012.07.017.
    1. Rank RG, Yeruva L. 2014. Hidden in plain sight: chlamydial gastrointestinal infection and its relevance to persistence in human genital infection. Infect Immun 82:1362–1371. doi:10.1128/IAI.01244-13.
    1. Zhang Q, Huang Y, Gong S, Yang Z, Sun X, Schenken R, Zhong G. 2015. In vivo and ex vivo imaging reveals a long-lasting chlamydial infection in the mouse gastrointestinal tract following genital tract inoculation. Infect Immun 83:3568–3577. doi:10.1128/IAI.00673-15.
    1. Su H, Morrison R, Messer R, Whitmire W, Hughes S, Caldwell HD. 1999. The effect of doxycycline treatment on the development of protective immunity in a murine model of chlamydial genital infection. J Infect Dis 180:1252–1258. doi:10.1086/315046.
    1. Su H, Messer R, Whitmire W, Hughes S, Caldwell HD. 2000. Subclinical chlamydial infection of the female mouse genital tract generates a potent protective immune response: implications for development of live attenuated chlamydial vaccine strains. Infect Immun 68:192–196. doi:10.1128/IAI.68.1.192-196.2000.
    1. Masopust D, Picker LJ. 2012. Hidden memories: frontline memory T cells and early pathogen interception. J Immunol 188:5811–5817. doi:10.4049/jimmunol.1102695.
    1. Schenkel JM, Fraser KA, Vezys V, Masopust D. 2013. Sensing and alarm function of resident memory CD8(+) T cells. Nat Immunol 14:509–513. doi:10.1038/ni.2568.
    1. Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D. 2014. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346:98–101. doi:10.1126/science.1254536.
    1. Steinert EM, Schenkel JM, Fraser KA, Beura LK, Manlove LS, Igyártó BZ, Southern PJ, Masopust D. 2015. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161:737–749. doi:10.1016/j.cell.2015.03.031.
    1. Riley MM, Zurenski MA, Frazer LC, O’Connell CM, Andrews CW, Mintus M, Darville T. 2012. The recall response induced by genital challenge with Chlamydia muridarum protects the oviduct from pathology but not from reinfection. Infect Immun 80:2194–2203. doi:10.1128/IAI.00169-12.
    1. McSorley SJ, Cookson BT, Jenkins MK. 2000. Characterization of CD.4+ T cell responses during natural infection with Salmonella typhimurium. J Immunol 164:986–993. doi:10.4049/jimmunol.164.2.986.
    1. McSorley SJ, Ehst BD, Yu Y, Gewirtz AT. 2002. Bacterial flagellin is an effective adjuvant for CD4 T cells in vivo. J Immunol 169:3914–3919. doi:10.4049/jimmunol.169.7.3914.

Source: PubMed

3
Abonnieren