Assessment of the State of the Natural Antioxidant Barrier of a Body in Patients Complaining about the Presence of Tinnitus

Katarzyna Pawlak-Osińska, Henryk Kaźmierczak, Maria Marzec, Daria Kupczyk, Rafał Bilski, Emilia Mikołajewska, Dariusz Mikołajewski, Beata Augustyńska, Katarzyna Pawlak-Osińska, Henryk Kaźmierczak, Maria Marzec, Daria Kupczyk, Rafał Bilski, Emilia Mikołajewska, Dariusz Mikołajewski, Beata Augustyńska

Abstract

Background: Tinnitus is defined as a phantom auditory perception, i.e., sound experience despite the lack of acoustic stimuli in the environment. The aim of this study was to assess the state of the natural antioxidant barrier of a body in patients complaining about the presence of tinnitus.

Material and methods: The study included a total of 51 patients aged from 20 to 62 years with diagnosed idiopathic tinnitus and 19 healthy subjects as a control group. All patients underwent the audiometric tone test, speech audiometry, distortion otoacoustic emission product testing, study of evoked auditory potentials of short latency, and biochemical analysis of venous blood concerning values of activity or concentration of glutathione, glutathione peroxidase, S-transferase, glutathione reductase superoxide dismutase, malondialdehyde, and ceruloplasmin as the selected parameters of oxidative stress.

Results: Disorders of the auditory pathway were not only limited to the cochlea but also covered its further episodes. Mean values of activity or concentration of the selected parameters of oxidative stress in the study and control groups showed reduced effectiveness of the body's natural antioxidant barrier.

Discussion: Patients complaining about the presence of tinnitus showed reduced effectiveness of the body's natural antioxidant barrier compared to the control group.

Conclusions: The main indication to undertake further research on the functioning of the antioxidant barrier in people suffering from ailments in the form of tinnitus is to determine a suitable therapy aimed at improving the quality of life of these patients, which might be the administration of antioxidant medications.

References

    1. Potargowicz E., Szerszenowicz E., Staniszewska M., Nowak D. Mitochondria as a source of reactive oxygen species. Postȩpy Higieny i Medycyny Doświadczalnej. 2005;59:259–266.
    1. Zabłocka A., Janusz M. The two faces of reactive oxygen species. Postȩpy Higieny i Medycyny Doświadczalnej. 2008;62:118–124.
    1. Czajka A. Reactive oxygen species and mechanisms of body protection. Nowiny Lekarskie. 2006;75(6):582–586.
    1. Zachwieja J., Dobrowolska-Zachwieja A., Bobkowski W., Maciejewski J. Free radicals and antioxidative mechanisms—their role in pathogenesis of diseases. Pediatr Prakt. 2000;8(3):267–274.
    1. Genova M. L., Pich M. M., Bernacchia A., et al. The mitochondrial production of reactive oxygen species in relation to aging and pathology. Annals of the New York Academy of Sciences. 2004;1011(1):86–100. doi: 10.1196/annals.1293.010.
    1. Young I. S., Woodside J. V. Antioxidants in health and disease. Journal of Clinical Pathology. 2001;54(3):176–186. doi: 10.1136/jcp.54.3.176.
    1. Bokov A., Chaudhuri A., Richardson A. The role of oxidative damage and stress in aging. Mechanisms of Ageing and Development. 2004;125(10-11):811–826. doi: 10.1016/j.mad.2004.07.009.
    1. Łuszczewski A., Matyska-Piekarska E., Trefler J., Wawer I., Łącki J., Śliwińska-Stańczyk P. Reactive oxygen species—physiological and pathological function in the human body. Reumatologia. 2007;45(5):284–289.
    1. Bartosz G. Druga Twarz Tlenu. Warszawa, Poland: Wyd. Naukowe PWN; 2003.
    1. Kulbacka J., Saczko J., Chwiłkowska A. Stres oksydacyjny w procesach uszkodzenia komórek. Polski Merkuriusz Lekarsk. 2009;27(157):44–47.
    1. Jastreboff P. J. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neuroscience Research. 1990;8(4):221–254. doi: 10.1016/0168-0102(90)90031-9.
    1. Heller A. J. Classification and epidemiology of tinnitus. Otolaryngologic Clinics of North America. 2003;36(2):239–248. doi: 10.1016/S0030-6665(02)00160-3.
    1. Axelsson A., Ringdahl A. Tinnitus—a study of its prevalence and characteristics. British Journal of Audiology. 1989;23(1):53–62. doi: 10.3109/03005368909077819.
    1. Hoffman H. J., Reed G. W. Epidemiology of tinnitus. In: Snow J. B., editor. Tinnitus: Theory and Management. London, UK: BC Decker; 2004. pp. 16–41.
    1. Belli S., Belli H., Bahcebasi T., Ozcetin A., Alpay E., Ertem U. Assessment of psychopathological aspects and psychiatric comorbidities in patients affected by tinnitus. European Archives of Oto-Rhino-Laryngology. 2008;265(3):279–285. doi: 10.1007/s00405-007-0440-8.
    1. Unterrainer J., Greimel K. V., Leibetseder M., Koller T. Experiencing tinnitus: which factors are important for perceived severity of the symptom? The International Tinnitus Journal. 2003;9(2):130–133.
    1. Newman C. W., Jacobson G. P., Spitzer J. B. Development of the tinnitus handicap inventory. Archives of Otolaryngology - Head and Neck Surgery. 1996;122(2):143–148. doi: 10.1001/archotol.1996.01890140029007.
    1. Haase G. M., Prasad K. N., Cole W. C., Baggett-Strehlau J. M., Wyatt S. E. Antioxidant micronutrient impact on hearing disorders: concept, rationale, and evidence. American Journal of Otolaryngology. 2011;32(1):55–61. doi: 10.1016/j.amjoto.2009.09.002.
    1. Holley M. C. Hair cell re-growth. International Journal of Pediatric Otorhinolaryngology. 2003;67:S1–S5. doi: 10.1016/j.ijporl.2003.08.005.
    1. Henderson D., Bielefeld E. C., Harris K. C., Hu B. H. The role of oxidative stress in noise-induced hearing loss. Ear and Hearing. 2006;27(1):1–19. doi: 10.1097/01.aud.0000191942.36672.f3.
    1. Rybak L. P., Whitworth C. A., Mukherjea D., Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hearing Research. 2007;226(1-2):157–167. doi: 10.1016/j.heares.2006.09.015.
    1. Seligmann H., Podoshin L., Ben-David J., Fradis M., Goldsher M. Drug-induced tinnitus and other hearing disorders. Drug Safety. 1996;14(3):198–212. doi: 10.2165/00002018-199614030-00006.
    1. Griest S. E., Bishop P. M. Tinnitus as an early indicator of permanent hearing loss. A 15 year longitudinal study of noise exposed workers. AAOHN Journal. 1998;46(7):325–329. doi: 10.1177/216507999804600704.
    1. Hou F., Wang S., Zhai S., Hu Y., Yang W., He L. Effects of α-tocopherol on noise-induced hearing loss in guinea pigs. Hearing Research. 2003;179(1-2):1–8. doi: 10.1016/S0378-5955(03)00065-0.
    1. Joachims H. Z., Segal J., Golz A., Netzer A., Goldenberg D. Antioxidants in treatment of idiopathic sudden hearing loss. Otology & Neurotology. 2003;24(4):572–575. doi: 10.1097/00129492-200307000-00007.
    1. Pawełczyk M., Rajkowska E., Kotyło P., Dudarewicz A., Camp G., Śliwińska-Kowalska M. Analysis of inner ear potassium recycling genes as potential factors associated with tinnitus. International Journal of Occupational Medicine and Environmental Health. 2012;25(4):356–364. doi: 10.2478/S13382-012-0061-3.
    1. Ciorba A., Astolfi L., Martini A. Otoprotection and inner ear regeneration. Audiological Medicine. 2008;6(3):170–175. doi: 10.1080/16513860802410806.
    1. Rybak L. P., Whitworth C. A. Ototoxicity: therapeutic opportunities. Drug Discovery Today. 2005;10(19):1313–1321. doi: 10.1016/S1359-6446(05)03552-X.
    1. Jiang H., Sha S. H., Forge A., Schacht J. Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death & Differentiation. 2006;13(1):20–30. doi: 10.1038/sj.cdd.4401706.
    1. Nakagawa T., Yamane H., Takayama M., Sunami K., Nakai Y. Apoptosis of guinea pig cochlear hair cells following chronic aminoglycoside treatment. European Archives of Oto-Rhino-Laryngology. 1998;255(3):127–131. doi: 10.1007/s004050050027.
    1. Elgoyhen A. B., Langguth B., Vanneste S., de Ridder D. Tinnitus: network pathophysiology-network pharmacology. Frontiers in Systems Neuroscience. 2012;6:p. 1. doi: 10.3389/fnsys.2012.00001.
    1. Li J., Kong W. J., Zhao X. Y., Hu Y. J. Oxidative stress experimental model of rat with stria vascularis marginal cells injury induced by hydrogen peroxide in vitro. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2008;43(11):835–839.
    1. Neri S., Signorelli S., Pulvirenti D., et al. Oxidative stress, nitric oxide, endothelial dysfunction and tinnitus. Free Radical Research. 2006;40(6):615–618. doi: 10.1080/10715760600623825.
    1. Beutler E. Red cell metabolism. In: Beutler E., editor. A Manual of Biochemical Methods. New York, NY, USA: Grune-Stratton; 1971. pp. 11–12.
    1. Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine. 1967;70(1):158–169.
    1. Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods in Enzymology. 1981;77:398–405. doi: 10.1016/S0076-6879(81)77053-8.
    1. Misra H. P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. The Journal of Biological Chemistry. 1972;247(10):3170–3175.
    1. Placer Z. A., Cushman L. L., Johnson B. C. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry. 1966;16(2):359–364. doi: 10.1016/0003-2697(66)90167-9.
    1. Griess P. Bemerkungen zu der abhandlung der HH. Weselsky und Benedikt “Ueber eininge azoverbindungen”. Berichte der Deutschen Chemischen Gesellschaft. 1879;12(1):426–428. doi: 10.1002/cber.187901201117.
    1. Ravin H. A. An improved colorimetric enzymatic assay of ceruloplasmin. The Journal of Laboratory and Clinical Medicine. 1961;58:161–168.
    1. Dröge W. Free radicals in the physiological control of cell function. Physiological Reviews. 2002;82(1):47–95. doi: 10.1152/physrev.00018.2001.
    1. Trougakos I. P., Gonos E. S. Regulation of clusterin/apolipoprotein J, a functional homologue to the small heat shock proteins, by oxidative stress in ageing and age-related diseases. Free Radical Research. 2006;40(12):1324–1334. doi: 10.1080/10715760600902310.
    1. Touyz R. M. Oxidative stress and vascular damage in hypertension. Current Hypertension Reports. 2000;2(1):98–105. doi: 10.1007/s11906-000-0066-3.
    1. Yim M. B., Chock P. B., Stadtman E. R. Enzyme function of copper, zinc superoxide dismutase as a free radical generator. The Journal of Biological Chemistry. 1993;268(6):4099–4105.
    1. Zhang Z. J., Luo H. L., Li J. S. Clinical and experimental studies on elimination of oxygen free radical of jinshuibao capsule in treating senile deficiency syndrome and its deoxyribonucleic acid damage repairing effects. Zhongguo Zhong Xi Yi Jie He Za Zhi. 1997;17(1):35–38.
    1. Łukaszewicz-Hussain A. The role of glutathione and glutathione-related enzymes in antioxidative processes. Medycyna Praktyczna. 2003;54(5):473–479.
    1. Roessner A., Kuester D., Malfertheiner P., Schneider-Stock R. Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathology - Research and Practice. 2008;204(7):511–524. doi: 10.1016/j.prp.2008.04.011.
    1. van de Heyning P., Muehlmeier G., Cox T., et al. Efficacy and safety of AM-101 in the treatment of acute inner ear tinnitus—a double-blind, randomized, placebo-controlled phase II study. Otology & Neurotology. 2014;35(4):589–597. doi: 10.1097/MAO.0000000000000268.
    1. Hayes J. D., Flanagan J. U., Jowsey I. R. Glutathione transferases. Annual Review of Pharmacology and Toxicology. 2005;45(1):51–88. doi: 10.1146/annurev.pharmtox.45.120403.095857.
    1. Liu X.-P., Goldring C. E. P., Wang H.-Y., Copple I. M., Kitteringham N. R., Park B. K. Extract of Ginkgo biloba induces glutathione-S-transferase subunit-P1 in vitro. Phytomedicine. 2009;16(5):451–455. doi: 10.1016/j.phymed.2008.11.001.
    1. Wang X. M., Xie Z. F. A clinical study of the effect of wuzi yanzong solution in retarding aging process. Zhongguo Zhong Xi Yi Jie He Za Zhi. 1992;12(1):23–25.
    1. Asahi M., Fujii J., Suzuki K., et al. Inactivation of glutathione peroxidase by nitric oxide. Journal of Biological Chemistry. 1995;270(36):21035–21039. doi: 10.1074/jbc.270.36.21035.
    1. Blum J., Fridovich I. Inactivation of glutathione peroxidase by superoxide radical. Archives of Biochemistry and Biophysics. 1985;240(2):500–508. doi: 10.1016/0003-9861(85)90056-6.
    1. Miyamoto Y., Koh Y. H., Park Y. S., et al. Oxidative stress caused by inactivation of glutathione peroxidase and adaptive responses. Biological Chemistry. 2003;384(4):567–574. doi: 10.1515/BC.2003.064.
    1. Liu X.-P., Goldring C. E. P., Wang H.-Y., et al. Extract of Ginkgo biloba induces glutamate cysteine ligase catalytic subunit (GCLC) Phytotherapy Research. 2008;22(3):367–371. doi: 10.1002/ptr.2328.
    1. Gil L., Siems W., Mazurek B., et al. Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radical Research. 2006;40(5):495–505. doi: 10.1080/10715760600592962.
    1. Calabrese V., Cornelius C., Maiolino L., et al. Oxidative stress, redox homeostasis and cellular stress response in Ménière’s disease: role of vitagenes. Neurochemical Research. 2010;35(12):2208–2217. doi: 10.1007/s11064-010-0304-2.
    1. Augustyniak A., Skrzydlewska E. Antioxidative abilities during aging. Postępy Higieny i Medycyny Doświadczalnej. 2004;58:194–201.
    1. Healy J., Tipton K. Ceruloplasmin and what it might do. Journal of Neural Transmission. 2007;114(6):777–781. doi: 10.1007/s00702-007-0687-7.
    1. Hineno A., Kaneko K., Yoshida K., Ikeda S. Ceruloplasmin protects against rotenone-induced oxidative stress and neurotoxicity. Neurochemical Research. 2011;36(11):2127–2135. doi: 10.1007/s11064-011-0537-8.
    1. Rezaie A., Parker R. D., Abdollahi M. Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Digestive Diseases and Sciences. 2007;52(9):2015–2021. doi: 10.1007/s10620-006-9622-2.
    1. O'Donnell V. B., Chumley P. H., Hogg N., Bloodsworth A., Darley-Usmar V. M., Freeman B. A. Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxyl radicals and comparison with α-tocopherol. Biochemistry. 1997;36(49):15216–15223. doi: 10.1021/bi971891z.
    1. Coomber B., Kowalkowski V. L., Berger J. I., Palmer A. R., Wallace M. N. Modulating central gain in tinnitus: changes in nitric oxide synthase in the ventral cochlear nucleus. Frontiers in Neurology. 2015;6:p. 53. doi: 10.3389/fneur.2015.00053.
    1. Janero D. R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine. 1990;9(6):515–540. doi: 10.1016/0891-5849(90)90131-2.
    1. Savastano M., Brescia G., Marioni G. Antioxidant therapy in idiopathic tinnitus: preliminary outcomes. Archives of Medical Research. 2007;38(4):456–459. doi: 10.1016/j.arcmed.2006.12.004.
    1. Raponi G., Alpini D., Volontè S., Capobianco S., Cesarani A. The role of free radicals and plasmiatic antioxidant in Ménière’s syndrome. The International Tinnitus Journal. 2003;9(2):104–108.
    1. Menéndez S., Del Cerro A., Alvarez T., Hernández F. Application of ozone therapy in the vestibulocochlear syndrome. Reviews on Recent Clinical Trials. 2012;7(4):321–328.
    1. Fujimura T., Suzuki H., Shiomori T., Udaka T., Mori T. Hyperbaric oxygen and steroid therapy for idiopathic sudden sensorineural hearing loss. European Archives of Oto-Rhino-Laryngology. 2007;264(8):861–866. doi: 10.1007/s00405-007-0272-6.
    1. Desloovere C. Hyperbaric oxygen therapy for tinnitus. B-ENT. 2007;3(7):71–74.
    1. Stiegler P., Matzi V., Lipp C., et al. Hyperbaric oxygen (HBO2) in tinnitus: influence of psychological factors on treatment results? Undersea & Hyperbaric Medicine. 2006;33(6):429–437.
    1. Porzych K., Augustyńska B., Porzych M., et al. Change of the state of the natural antioxidant barrier of a body and psychological parameters in patients aged above 60. Oxidative Medicine and Cellular Longevity. 2017;2017:9. doi: 10.1155/2017/6568501.6568501

Source: PubMed

3
Abonnieren