Modeling-Based Bone Formation After 2 Months of Romosozumab Treatment: Results From the FRAME Clinical Trial

Erik F Eriksen, Roland Chapurlat, Rogely Waite Boyce, Yifei Shi, Jacques P Brown, Stéphane Horlait, Donald Betah, Cesar Libanati, Pascale Chavassieux, Erik F Eriksen, Roland Chapurlat, Rogely Waite Boyce, Yifei Shi, Jacques P Brown, Stéphane Horlait, Donald Betah, Cesar Libanati, Pascale Chavassieux

Abstract

The bone-forming agent romosozumab is a monoclonal antibody that inhibits sclerostin, leading to increased bone formation and decreased resorption. The highest levels of bone formation markers in human patients are observed in the first 2 months of treatment. Histomorphometric analysis of bone biopsies from the phase 3 FRAME trial (NCT01575834) showed an early significant increase in bone formation with concomitant decreased resorption. Preclinical studies demonstrated that most new bone formation after romosozumab treatment was modeling-based bone formation (MBBF). Here we analyzed bone biopsies from FRAME to assess the effect of 2 months of romosozumab versus placebo on the surface extent of MBBF and remodeling-based bone formation (RBBF). In FRAME, postmenopausal women aged ≥55 years with osteoporosis were randomized 1:1 to 210 mg romosozumab or placebo sc every month for 12 months, followed by 60 mg denosumab sc every 6 months for 12 months. Participants in the bone biopsy substudy received quadruple tetracycline labeling and underwent transiliac biopsies at month 2. A total of 29 biopsies were suitable for histomorphometry. Using fluorescence microscopy, bone formation at cancellous, endocortical, and periosteal envelopes was classified based on the appearance of underlying cement lines as modeling (smooth) or remodeling (scalloped). Data were compared using the Wilcoxon rank-sum test, without multiplicity adjustment. After 2 months, the median percentage of MBBF referent to the total bone surface was significantly increased with romosozumab versus placebo on cancellous (18.0% versus 3.8%; p = 0.005) and endocortical (36.7% versus 3.0%; p = 0.001), but not on periosteal (5.0% versus 2.0%; p = 0.37) surfaces, with no significant difference in the surface extent of RBBF on all three bone surfaces. These data show that stimulation of bone formation in the first 2 months of romosozumab treatment in postmenopausal women with osteoporosis is predominately due to increased MBBF on endocortical and cancellous surfaces. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

Keywords: BONE HISTOMORPHOMETRY; BONE MODELING AND REMODELING; OSTEOPOROSIS; THERAPEUTICS; Wnt/β-CATENIN/LRPs CELL/TISSUE SIGNALING.

© 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

References

    1. Gong J, Cao J, Ho J, Chen C, Paszty C. Romosozumab blocks the binding of sclerostin to the two key Wnt signaling co-receptors, LRP5 and LRP6, but not to LRP4. J Bone Miner Res. 2016;31(S1):S386-S387.
    1. Cosman F, Crittenden DB, Adachi JD, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375(16):1532-1543.
    1. McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370(5):412-420.
    1. Chavassieux P, Chapurlat R, Portero-Muzy N, et al. Bone-forming and antiresorptive effects of romosozumab in postmenopausal women with osteoporosis: bone histomorphometry and microcomputed tomography analysis after 2 and 12 months of treatment. J Bone Miner Res. 2019;34(9):1597-1608.
    1. Chouinard L, Felx M, Mellal N, et al. Carcinogenicity risk assessment of romosozumab: a review of scientific weight-of-evidence and findings in a rat lifetime pharmacology study. Regul Toxicol Pharmacol. 2016;81:212-222.
    1. Ominsky MS, Boyce RW, Li X, Ke HZ. Effects of sclerostin antibodies in animal models of osteoporosis. Bone. 2017;96:63-75.
    1. Boyce RW, Niu Q-T, Ominsky MS. Kinetic reconstruction reveals time-dependent effects of romosozumab on bone formation and osteoblast function in vertebral cancellous and cortical bone in cynomolgus monkeys. Bone. 2017;101:77-87.
    1. Ominsky MS, Niu Q-T, Li C, Li X, Ke HZ. Tissue-level mechanisms responsible for the increase in bone formation and bone volume by sclerostin antibody. J Bone Miner Res. 2014;29(6):1424-1430.
    1. Boyce RW, Brown D, Felx M, et al. Decreased osteoprogenitor proliferation precedes attenuation of cancellous bone formation in ovariectomized rats treated with sclerostin antibody. Bone Rep. 2018;8:90-94.
    1. Greenbaum A, Chan KY, Dobreva T, et al. Bone CLARITY: clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci Transl Med. 2017;9(387):eaah6518.
    1. Kim SW, Lu Y, Williams EA, et al. Sclerostin antibody administration converts bone lining cells into active osteoblasts. J Bone Miner Res. 2017;32(5):892-901.
    1. Hattner R, Epker BN, Frost HM. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature. 1965;206(983):489-490.
    1. Eriksen EF. Normal and pathological remodeling of human trabecular bone: three dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocr Rev. 1986;7(4):379-408.
    1. Dempster DW, Zhou H, Recker RR, et al. Remodeling- and modeling-based bone formation with teriparatide versus denosumab: a longitudinal analysis from baseline to 3 months in the AVA study. J Bone Miner Res. 2018;33(2):298-306.
    1. Dempster DW, Zhou H, Recker RR, et al. Skeletal histomorphometry in subjects on teriparatide or zoledronic acid therapy (SHOTZ) study: a randomized controlled trial. J Clin Endocrinol Metab. 2012;97(8):2799-2808.
    1. Body J-J, Gaich GA, Scheele WH, et al. A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1-34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2002;87(10):4528-4535.
    1. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434-1441.
    1. Borggrefe J, Graeff C, Nickelsen TN, Marin F, Glüer CC. Quantitative computed tomographic assessment of the effects of 24 months of teriparatide treatment on 3D femoral neck bone distribution, geometry, and bone strength: results from the EUROFORS study. J Bone Miner Res. 2010;25(3):472-481.
    1. Ma YL, Zeng Q, Donley DW, et al. Teriparatide increases bone formation in modeling and remodeling osteons and enhances IGF-II immunoreactivity in postmenopausal women with osteoporosis. J Bone Miner Res. 2006;21(6):855-864.
    1. Saag KG, Petersen J, Brandi ML, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017;377(15):1417-1427.

Source: PubMed

3
Abonnieren