Impaired cardiac and skeletal muscle bioenergetics in children, adolescents, and young adults with Barth syndrome

Adil Bashir, Kathryn L Bohnert, Dominic N Reeds, Linda R Peterson, Adam J Bittel, Lisa de Las Fuentes, Christina A Pacak, Barry J Byrne, W Todd Cade, Adil Bashir, Kathryn L Bohnert, Dominic N Reeds, Linda R Peterson, Adam J Bittel, Lisa de Las Fuentes, Christina A Pacak, Barry J Byrne, W Todd Cade

Abstract

Barth syndrome (BTHS) is an X-linked condition characterized by altered cardiolipin metabolism and cardioskeletal myopathy. We sought to compare cardiac and skeletal muscle bioenergetics in children, adolescents, and young adults with BTHS and unaffected controls and examine their relationships with cardiac function and exercise capacity. Children/adolescents and young adults with BTHS (n = 20) and children/adolescent and young adult control participants (n = 23, total n = 43) underwent 31P magnetic resonance spectroscopy (31P-MRS) of the lower extremity (calf) and heart for estimation of skeletal muscle and cardiac bioenergetics. Peak exercise testing (VO2peak) and resting echocardiography were also performed on all participants. Cardiac PCr/ATP ratio was significantly lower in children/adolescents (BTHS: 1.5 ± 0.2 vs.

Control: 2.0 ± 0.3, P < 0.01) and adults (BTHS: 1.9 ± 0.2 vs.

Control: 2.3 ± 0.2, P < 0.01) with BTHS compared to Control groups. Adults (BTHS: 76.4 ± 31.6 vs.

Control: 35.0 ± 7.4 sec, P < 0.01) and children/adolescents (BTHS: 71.5 ± 21.3 vs.

Control: 31.4 ± 7.4 sec, P < 0.01) with BTHS had significantly longer calf PCr recovery (τPCr) postexercise compared to controls. Maximal calf ATP production through oxidative phosphorylation (Qmax-lin) was significantly lower in children/adolescents (BTHS: 0.5 ± 0.1 vs.

Control: 1.1 ± 0.3 mmol/L per sec, P < 0.01) and adults (BTHS: 0.5 ± 0.2 vs.

Control: 1.0 ± 0.2 mmol/L sec, P < 0.01) with BTHS compared to controls. Blunted cardiac and skeletal muscle bioenergetics were associated with lower VO2peak but not resting cardiac function. Cardiac and skeletal muscle bioenergetics are impaired and appear to contribute to exercise intolerance in BTHS.

Keywords: Barth syndrome; energetics; exercise; mitochondria; muscle.

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

Figures

Figure 1
Figure 1
Reference images of the heart. Location of saturation band and approximate sensitive region of the RF coil is also shown (A) Spectrum from a healthy control (B) and a participant with Barth syndrome (C) detailing the peaks of PCr, ATP, PDE, and 2,3 DPG. PCr resonance amplitude is reduced in spectrum from Barth participant with similar ATP amplitudes. The red dashed lines provide a visual cue of changes in PCr and ATP peaks. β‐ATP resonance in the spectra is diminished due to the bandwidth limitations of the adiabatic RF pulse. DPG, 2,3‐diphosphoglycerate; PDE, phosphodiester.
Figure 2
Figure 2
Typical postexercise PCr recovery data. PCr amplitude (normalized to resting condition) for all participants (A) Adults, (B) Children/Adolescents). Error bars represent standard error. Representative PCr recovery data from adults (C) and children/adolescents (D) showing example of signal exponential fit.
Figure 3
Figure 3
Scatterplots of VO 2peak and (A) τPCR, (B) Vi, C) Qmax‐lin, and (D) Qmax‐ADP during 60‐sec exercise.

References

    1. Altschuld, R. A. , and Brierley G. P.. 1977. Interaction between the creatine kinase of heart mitochondria and oxidative phosphorylation. J. Mol. Cell. Cardiol. 9:875–896.
    1. American College of Sports Medicine . 2000. ACSM's guidelines for exercise testing and prescription. Lippincott, Williams & Wilkins, Baltimore.
    1. Bahi, L. , Koulmann N., Sanchez H., Momken I., Veksler V., Bigard A. X., et al. 2004. Does ACE inhibition enhance endurance performance and muscle energy metabolism in rats? J. Appl. Physiol. (1985) 96:59–64.
    1. Barth, P. G. , Scholte H. R., Berden J. A., derVan Klei‐Van Moorsel J. M. , Luyt‐Houwen I. E., Van ‘t Veer‐Korthof E. T., et al. 1983. An X‐linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J. Neurol. Sci. 62: 327–355.
    1. Bashir, A. , and Gropler R.. 2014. Reproducibility of creatine kinase reaction kinetics in human heart: a (31) P time‐dependent saturation transfer spectroscopy study. NMR Biomed. 27:663–671.
    1. Bione, S. , D'Adamo P., Maestrini E., Gedeon A. K., Bolhuis P. A., and Toniolo D.. 1996. A novel X‐linked gene, G4.5. is responsible for Barth syndrome. Nat. Genet. 12: 385–389.
    1. Bissler, J. J. , Tsoras M., Goring H. H., Hug P., Chuck G., Tombragel E., et al. 2002. Infantile dilated X‐linked cardiomyopathy, G4.5 mutations, altered lipids, and ultrastructural malformations of mitochondria in heart, liver, and skeletal muscle. Lab. Invest. 82:335–344.
    1. Cade, W. T. , Spencer C. T., Reeds D. N., Waggoner A. D., O'Connor R., Maisenbacher M., et al. 2013. Substrate metabolism during basal and hyperinsulinemic conditions in adolescents and young‐adults with Barth syndrome. J. Inherit. Metab. Dis. 36:91–101.
    1. Cade, W. T. , Reeds D. N., Peterson L. R., Bohnert K. L., Tinius R. A., Benni P. B., et al. 2016. Endurance Exercise Training in Young Adults with Barth Syndrome: A Pilot Study. JIMD Rep. DOI:.
    1. Chance, B. , Eleff S., Leigh J. S. Jr, Sokolow D., and Sapega A.. 1981. Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle: a gated 31P NMR study. Proc. Natl Acad. Sci. USA 78:6714–6718.
    1. Chance, B. , Leigh J. S. Jr, Clark B. J., Maris J., Kent J., Nioka S., et al. 1985. Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady‐state analysis of the work/energy cost transfer function. Proc. Natl Acad. Sci. USA 82:8384–8388.
    1. Conway, M. A. , Allis J., Ouwerkerk R., Niioka T., Rajagopalan B., and Radda G. K.. 1991. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 338:973–976.
    1. Edwards, R. H. , Dawson M. J., Wilkie D. R., Gordon R. E., and Shaw D.. 1982. Clinical use of nuclear magnetic resonance in the investigation of myopathy. Lancet 1:725–731.
    1. El‐Sharkawy, A. M. , Schar M., Ouwerkerk R., Weiss R. G., and Bottomley P. A.. 2009. Quantitative cardiac 31P spectroscopy at 3 Tesla using adiabatic pulses. Magn. Reson. Med. 61:785–795.
    1. Gomez, A. , Sanchez‐Roman I., Gomez J., Cruces J., Mate I., Lopez‐Torres M., et al. 2014. Lifelong treatment with atenolol decreases membrane fatty acid unsaturation and oxidative stress in heart and skeletal muscle mitochondria and improves immunity and behavior, without changing mice longevity. Aging Cell 13:551–560.
    1. Gonzalvez, F. , D'Aurelio M., Boutant M., Moustapha A., Puech J. P., Landes T., et al. 2013. Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Biochim. Biophys. Acta 1832:1194–1206.
    1. Hiona, A. , Lee A. S., Nagendran J., Xie X., Connolly A. J., Robbins R. C., et al. 2011. Pretreatment with angiotensin‐converting enzyme inhibitor improves doxorubicin‐induced cardiomyopathy via preservation of mitochondrial function. J. Thorac. Cardiovasc. Surg. 142: 396–403e393.
    1. Hom, J. R. , Quintanilla R. A., Hoffman D. L. K. L , de Mesy Bentley , Molkentin J. D., Sheu S. S., et al. 2011. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev. Cell 21:469–478.
    1. Hudsmith, L. E. , and Neubauer S.. 2009. Magnetic resonance spectroscopy in myocardial disease. JACC Cardiovasc. Imaging 2:87–96.
    1. Ingwall, J. S. , Kramer M. F., Fifer M. A., Lorell B. H., Shemin R., Grossman W., et al. 1985. The creatine kinase system in normal and diseased human myocardium. NEJM 313:1050–1054.
    1. Kemp, G. J. , and Radda G. K.. 1994. Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn. Reson. Q. 10:43–63.
    1. Kemp, G. J. , Roussel M., Bendahan D., Le Fur Y., and Cozzone P. J.. 2001. Interrelations of ATP synthesis and proton handling in ischaemically exercising human forearm muscle studied by 31P magnetic resonance spectroscopy. J. Physiol. 535:901–928.
    1. Kemp, G. J. , Meyerspeer M., and Moser E.. 2007. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed. 20:555–565.
    1. Kemp, G. J. , Ahmad R. E., Nicolay K., and Prompers J. J.. 2015. Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol. 213:107–144.
    1. Kushmerick, M. J. , Moerland T. S., and Wiseman R. W.. 1992. Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proc. Natl Acad. Sci. USA 89:7521–7525.
    1. Lang, R. M. , Bierig M., Devereux R. B., Flachskampf F. A., Foster E., Pellikka P. A., et al., Chamber Quantification Writing G , American Society of Echocardiography's G , Standards C , European Association of E . 2005. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 18:1440–1463.
    1. Lanza, I. R. , and Nair K. S.. 2010. Mitochondrial function as a determinant of life span. Pflugers Arch. 459:277–289.
    1. Lanza, I. R. , Befroy D. E., and Kent‐Braun J. A.. 2005. Age‐related changes in ATP‐producing pathways in human skeletal muscle in vivo. J. Physiol. 99:1736–1744.
    1. Larson‐Meyer, D. E. , Newcomer B. R., Hunter G. R., Hetherington H. P., and Weinsier R. L.. 2000. 31P MRS measurement of mitochondrial function in skeletal muscle: reliability, force‐level sensitivity and relation to whole body maximal oxygen uptake. NMR Biomed. 13:14–27.
    1. Layec, G. , Bringard A., Le Fur Y., Vilmen C., Micallef J. P., Perrey S., et al. 2011. Comparative determination of energy production rates and mitochondrial function using different 31P MRS quantitative methods in sedentary and trained subjects. NMR Biomed. 24:425–438.
    1. Liu, T. , Brown D. A., and O'Rourke B.. 2010. Role of mitochondrial dysfunction in cardiac glycoside toxicity. J. Mol. Cell. Cardiol. 49:728–736.
    1. Matthews, P. M. , Allaire C., Shoubridge E. A., Karpati G., Carpenter S., and Arnold D. L.. 1991. In vivo muscle magnetic resonance spectroscopy in the clinical investigation of mitochondrial disease. Neurology 41:114–120.
    1. Meyer, R. A. 1988. A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am. J. Physiol. 254:C548–C553.
    1. Meyer, R. A. , Sweeney H. L., and Kushmerick M. J.. 1984. A simple analysis of the “phosphocreatine shuttle”. Am. J. Physiol. 246:C365–C377.
    1. Minotti, J. R. , Johnson E. C., Hudson T. L., Zuroske G., Fukushima E., Murata G., et al. 1990. Training‐induced skeletal muscle adaptations are independent of systemic adaptations. J. Appl. Physiol. 68:289–294.
    1. Naressi, A. , Couturier C., Devos J. M., Janssen M., Mangeat C., de Beer R., et al. 2001. Java‐based graphical user interface for the MRUI quantitation package. Magma 12:141–152.
    1. Nascimben, L. , Ingwall J. S., Pauletto P., Friedrich J., Gwathmey J. K., Saks V., et al. 1996. Creatine kinase system in failing and nonfailing human myocardium. Circulation 94:1894–1901.
    1. Neubauer, S. , Horn M., Cramer M., Harre K., Newell J. B., Peters W., et al. 1997. Myocardial phosphocreatine‐to‐ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196.
    1. Powers, C. , Huang Y., Strauss A., and Khuchua Z.. 2013. Diminished Exercise Capacity and Mitochondrial bc1 Complex Deficiency in Tafazzin‐Knockdown Mice. Front. Physiol. 4:74.
    1. Ratel, S. , Tonson A., Le Fur Y., Cozzone P., and Bendahan D.. 2008. Comparative analysis of skeletal muscle oxidative capacity in children and adults: a 31P‐MRS study. Appl. Physiol. Nutr. Metab. 33:720–727.
    1. Roussel, M. , Bendahan D., Mattei J. P., Le Fur Y., and Cozzone P. J.. 2000. 31P magnetic resonance spectroscopy study of phosphocreatine recovery kinetics in skeletal muscle: the issue of intersubject variability. Biochim. Biophys. Acta 1457:18–26.
    1. Sapega, A. A. , Sokolow D. P., Graham T. J., and Chance B.. 1993. Phosphorus nuclear magnetic resonance: a non‐invasive technique for the study of muscle bioenergetics during exercise. Med. Sci. Sports Exerc. 25:656–666.
    1. Schlame, M. , Kelley R. I., Feigenbaum A., Towbin J. A., Heerdt P. M., Schieble T., et al. 2003. Phospholipid abnormalities in children with Barth syndrome. J. Am. Coll. Cardiol. 42:1994–1999.
    1. Sgobbo, P. , Pacelli C., Grattagliano I., Villani G., and Cocco T.. 2007. Carvedilol inhibits mitochondrial complex I and induces resistance to H2O2 ‐mediated oxidative insult in H9C2 myocardial cells. Biochim. Biophys. Acta 1767:222–232.
    1. Smith, C. S. , Bottomley P. A., Schulman S. P., Gerstenblith G., and Weiss R. G.. 2006. Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium. Circulation 114:1151–1158.
    1. Spencer, C. T. , Bryant R. M., Day J., Gonzalez I. L., Colan S. D., Thompson W. R., et al. 2006. Cardiac and clinical phenotype in Barth syndrome. Pediatrics 118:e337–e346.
    1. Spencer, C. T. , Byrne B. J., Bryant R. M., Margossian R., Maisenbacher M., Breitenger P., et al. 2011. Impaired cardiac reserve and severely diminished skeletal muscle O(2) utilization mediate exercise intolerance in Barth syndrome. Am. J. Physiol. Heart Circ. Physiol. 301:H2122–H2129.
    1. Spoladore, R. , Fragasso G., Perseghin G., De Cobelli F., Esposito A., Maranta F., et al. 2013. Beneficial effects of beta‐blockers on left ventricular function and cellular energy reserve in patients with heart failure. Fundam. Clin. Pharmacol. 27:455–464.
    1. Takahashi, H. , Kuno S. Y., Katsuta S., Shimojo H., Masuda K., Yoshioka H., et al. 1996. Relationships between fiber composition and NMR measurements in human skeletal muscle. NMR Biomed. 9:8–12.
    1. Taylor, D. J. , Bore P. J., Styles P., Gadian D. G., and Radda G. K.. 1983. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol. Biol. Med. 1:77–94.
    1. Taylor, D. J. , Kemp G. J., Thompson C. H., and Radda G. K.. 1997. Ageing: effects on oxidative function of skeletal muscle in vivo. Mol. Biol. Med. 174:321–324.
    1. Thaveau, F. , Zoll J., Bouitbir J., N'Guessan B., Plobner P., Chakfe N., et al. 2010. Effect of chronic pre‐treatment with angiotensin converting enzyme inhibition on skeletal muscle mitochondrial recovery after ischemia/reperfusion. Fundam. Clin. Pharmacol. 24:333–340.
    1. Thompson, W. R. , DeCroes B., McClellan R., Rubens J., Vaz F. M., Kristaponis K., et al. 2016. New targets for monitoring and therapy in Barth syndrome. Genet. Med. 18:1001–1010.
    1. Tonson, A. , Ratel S., Le Fur Y., Vilmen C., Cozzone P. J., and Bendahan D.. 2010. Muscle energetics changes throughout maturation: a quantitative 31P‐MRS analysis. J. Appl. Physiol. (1985) 109:1769–1778.
    1. Vanhamme, L. , van den Boogaart A., and Van Huffel S.. 1997. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J. Magn. Reson. 129:35–43.
    1. Wang, G. , McCain M. L., Yang L., He A., Pasqualini F. S., Agarwal A., et al. 2014. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart‐on‐chip technologies. Nat. Med. 20:616–623.
    1. Wasserman, K . 1987. Determinants and detection of anaerobic threshold and consequences of exercise above it. Circulation 76: VI29–VI39.
    1. Waters, D. L. , Brooks W. M., Qualls C. R., and Baumgartner R. N.. 2003. Skeletal muscle mitochondrial function and lean body mass in healthy exercising elderly. Mech. Ageing Dev. 124:301–309.
    1. Xu, Y. , Phoon C. K., Berno B., D'Souza K., Hoedt E., Zhang G., et al. 2016. Loss of protein association causes cardiolipin degradation in Barth syndrome. Nat. Chem. Biol. 12:641–647.
    1. Yao, K. , Zhang W. W., Yao L., Yang S., Nie W., and Huang F.. 2016. Carvedilol promotes mitochondrial biogenesis by regulating the PGC‐1/TFAM pathway in human umbilical vein endothelial cells (HUVECs). Biochem. Biophys. Res. Commun. 470:961–966.
    1. Zhang, M. , Mileykovskaya E., and Dowhan W.. 2002. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J. Biol. Chem. 277:43553–43556.
    1. Zoll, J. , Monassier L., Garnier A., N'Guessan B., Mettauer B., Veksler V., et al. 2006. ACE inhibition prevents myocardial infarction‐induced skeletal muscle mitochondrial dysfunction. J. Appl. Physiol. (1985) 101:385–391.

Source: PubMed

3
Abonnieren