Safety and pharmacodynamic dose response of short-term prednisone in healthy adult subjects: a dose ranging, randomized, placebo-controlled, crossover study

Dona L Fleishaker, Arnab Mukherjee, Fredrick S Whaley, Shanthini Daniel, Bernhardt G Zeiher, Dona L Fleishaker, Arnab Mukherjee, Fredrick S Whaley, Shanthini Daniel, Bernhardt G Zeiher

Abstract

Background: Glucocorticoids (GCs), such as prednisone, are the standard of care for several inflammatory and immunologically mediated diseases, but their chronic systemic administration is severely limited by serious adverse effects that are both dose and time dependent. Short-term treatment (7-14 days) with oral prednisone is used for many acute inflammatory and allergic conditions. This study was conducted to characterize the safety and pharmacodynamic (PD) dose-response of a 7-day course of oral prednisone on biomarkers of GC receptor agonism.

Methods: In this randomized, single-blind, placebo-controlled, crossover study (A9001309), 37 healthy subjects received placebo or a prednisone dose from 2.5-60 mg daily over 7 days in each of three treatment periods. White blood cell counts and plasma samples for measuring cortisol, osteocalcin and procollagen type 1 N-propeptide (P1NP) were obtained at 2, 4, 8, and 12 h post-dose on Day 1, immediately prior to dosing on Days 1, 2, and 4, and at nominal dosing time on Days 0 and 8. Urine samples for urinary N-terminal cross-linked telopeptide of type 1 collagen (uNTX) were collected on Days 0, 1, 2, 4, and 8. Serum samples for adiponectin were obtained prior to dosing on days 0, 1, 4 and 8.

Results: Daily doses of prednisone up to 60 mg resulted in dose- and time-dependent decreases in plasma osteocalcin, plasma P1NP, serum cortisol, and absolute blood eosinophil counts. Absolute blood neutrophil counts increased, while blood lymphocyte counts rebounded to an increased level following an initial rapid decrease after dosing. An increase was observed for uNTX and adiponectin. The incidence of adverse effects with prednisone was not dose related, and nervous system disorders, mainly headache, were the most frequently reported adverse effects.

Conclusions: This characterization provides important and relevant information on safety and PD responses of short-term prednisone dosing over the commonly-used clinical dose range, and also provides a reference for early clinical development of dissociated agents targeting a differentiated PD profile.

Trial registration number: NCT02767089 (retrospectively registered: 21 April 2016).

Keywords: Biomarker; Dose–response; Glucocorticoid; Healthy-subject; Pharmacodynamic; Prednisone; Safety.

Figures

Fig. 1
Fig. 1
Mean serum cortisol concentrations up to 24 h following the first daily dose of prednisone. Pretreatment cortisol concentrations over 24 h were measured in all subjects the day prior to the first day of dosing in Period 1
Fig. 2
Fig. 2
Mean change from baseline (difference from placebo) in white blood cell counts. Eosinophil, neutrophil, and lymphocyte counts for Day 1 by hour (a, c, e) and for Days 1 through 8 (b, d, f) for each daily prednisone dose. *P ≤ 0.05 and **P ≤ 0.01 versus placebo
Fig. 3
Fig. 3
Mean change from baseline (difference from placebo) in biomarkers of bone metabolism. Change in osteocalcin (OC), procollagen type 1 N-propeptide (P1NP), and urinary N-terminal cross-linked telopeptide of type 1 collagen (uNTX) for each daily dose of prednisone. a OC: Day 1 by hour; (b) OC: Days 1–8; (c) P1NP: Days 1–8; (d) uNTX: Days 1–8. *P ≤ 0.05 and **P ≤ 0.01 versus placebo

References

    1. Abroug F, Ouanes I, Abroug S, Dachraoui F, Abdallah SB, Hammouda Z, Ouanes-Besbes L. Systemic corticosteroids in acute exacerbation of COPD: a meta-analysis of controlled studies with emphasis on ICU patients. Ann Intensive Care. 2014;4:32. doi: 10.1186/s13613-014-0032-x.
    1. Chung KF, Caramori G, Adcock IM. Inhaled corticosteroids as combination therapy with beta-adrenergic agonists in airways disease: present and future. Eur J Clin Pharmacol. 2009;65:853–71. doi: 10.1007/s00228-009-0682-z.
    1. Morand EF. Effects of glucocorticoids on inflammation and arthritis. Curr Opin Rheumatol. 2007;19:302–7. doi: 10.1097/BOR.0b013e32805e87d0.
    1. Liu D, Ahmet A, Ward L, Krishnamoorthy P, Mandelcorn ED, Leigh R, Brown JP, Cohen A, Kim H. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol. 2013;9:30. doi: 10.1186/1710-1492-9-30.
    1. McDonough AK, Curtis JR, Saag KG. The epidemiology of glucocorticoid-associated adverse events. Curr Opin Rheumatol. 2008;20:131–7. doi: 10.1097/BOR.0b013e3282f51031.
    1. Engvall IL, Brismar K, Hafstrom I, Tengstrand B. Treatment with low-dose prednisolone is associated with altered body composition but no difference in bone mineral density in rheumatoid arthritis patients: a controlled cross-sectional study. Scand J Rheumatol. 2011;40:161–8. doi: 10.3109/03009742.2010.523012.
    1. Krasselt M, Baerwald C. The current relevance and use of prednisone in rheumatoid arthritis. Expert Rev Clin Immunol. 2014;10:557–71. doi: 10.1586/1744666X.2014.904746.
    1. Pearce G, Tabensky DA, Delmas PD, Baker HW, Seeman E. Corticosteroid-induced bone loss in men. J Clin Endocrinol Metab. 1998;83:801–6. doi: 10.1210/jcem.83.3.4621.
    1. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13:777–87. doi: 10.1007/s001980200108.
    1. Henzen C, Suter A, Lerch E, Urbinelli R, Schorno XH, Briner VA. Suppression and recovery of adrenal response after short-term, high-dose glucocorticoid treatment. Lancet. 2000;355:542–5. doi: 10.1016/S0140-6736(99)06290-X.
    1. Kirwan JR, Hickey SH, Hallgren R, Mielants H, Bjorck E, Persson T, Wollheim FA. The effect of therapeutic glucocorticoids on the adrenal response in a randomized controlled trial in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54:1415–21. doi: 10.1002/art.21747.
    1. Bernatsky S, Hudson M, Suissa S. Anti-rheumatic drug use and risk of serious infections in rheumatoid arthritis. Rheumatology (Oxford) 2007;46:1157–60. doi: 10.1093/rheumatology/kem076.
    1. Bloemena E, Weinreich S, Schellekens PT. The influence of prednisolone on the recirculation of peripheral blood lymphocytes in vivo. Clin Exp Immunol. 1990;80:460–6. doi: 10.1111/j.1365-2249.1990.tb03310.x.
    1. Cavalcanti DM, Lotufo CM, Borelli P, Ferreira ZS, Markus RP, Farsky SH. Endogenous glucocorticoids control neutrophil mobilization from bone marrow to blood and tissues in non-inflammatory conditions. Br J Pharmacol. 2007;152:1291–300. doi: 10.1038/sj.bjp.0707512.
    1. Schacke H, Schottelius A, Docke WD, Strehlke P, Jaroch S, Schmees N, Rehwinkel H, Hennekes H, Asadullah K. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci U S A. 2004;101:227–32. doi: 10.1073/pnas.0300372101.
    1. Stock T, Fleishaker D, Wang X, Mukherjee A, Mebus C. Phase 2 evaluation of PF-04171327, a dissociated agonist of teh glucocorticoid receptor, for the treatment of rheumatoid arthritis in patients with an inadequate response to methotrexate. Arthritis Rheum. 2013;65(Suppl 10):2336.
    1. Berlin M. Recent advances in the development of novel glucocorticoid receptor modulators. Expert Opin Ther Pat. 2010;20:855–73. doi: 10.1517/13543776.2010.493876.
    1. Stock T, Fleishaker D, Mukherjee A, Le V, Xu J, Zeiher B. Evaluation of Safety, Pharmacokinetics and Pharmacodynamics of a Selective Glucocorticoid Receptor Modulator (SGRM) in Healthy Volunteers. Arthritis Rheum. 2009;60:420.
    1. Fauci AS, Dale DC. The effect of Hydrocortisone on the kinetics of normal human lymphocytes. Blood. 1975;46:235–43.
    1. Xu J, Winkler J, Sabarinath SN, Derendorf H. Assessment of the impact of dosing time on the pharmacokinetics/pharmacodynamics of prednisolone. AAPS J. 2008;10:331–41. doi: 10.1208/s12248-008-9038-3.
    1. Mager DE, Lin SX, Blum RA, Lates CD, Jusko WJ. Dose equivalency evaluation of major corticosteroids: pharmacokinetics and cell trafficking and cortisol dynamics. J Clin Pharmacol. 2003;43:1216–27. doi: 10.1177/0091270003258651.
    1. Fauci AS, Dale DC, Balow JE. Glucocorticosteroid therapy: mechanisms of action and clinical considerations. Ann Intern Med. 1976;84:304–15. doi: 10.7326/0003-4819-84-3-304.
    1. Saag KG, Koehnke R, Caldwell JR, Brasington R, Burmeister LF, Zimmerman B, Kohler JA, Furst DE. Low dose long-term corticosteroid therapy in rheumatoid arthritis: an analysis of serious adverse events. Am J Med. 1994;96:115–23. doi: 10.1016/0002-9343(94)90131-7.
    1. Verhoeven AC, Boers M. Limited bone loss due to corticosteroids; a systematic review of prospective studies in rheumatoid arthritis and other diseases. J Rheumatol. 1997;24:1495–503.
    1. Sambrook P, Lane NE. Corticosteroid osteoporosis. Best Pract Res Clin Rheumatol. 2001;15:401–13. doi: 10.1053/berh.2001.0157.
    1. Da Silva JA, Jacobs JW, Kirwan JR, Boers M, Saag KG, Ines LB, de Koning EJ, Buttgereit F, Cutolo M, Capell H, Rau R, Bijlsma JW. Safety of low dose glucocorticoid treatment in rheumatoid arthritis: published evidence and prospective trial data. Ann Rheum Dis. 2006;65:285–93. doi: 10.1136/ard.2005.038638.
    1. Bouvard B, Legrand E, Audran M, Chappard D. Glucocorticoid-induced osteoporosis: a review. Clin Rev Bone Miner Metab. 2010;8:15–26. doi: 10.1007/s12018-009-9051-9.
    1. Hall GM, Spector TD, Delmas PD. Markers of bone metabolism in postmenopausal women with rheumatoid arthritis. Effects of corticosteroids and hormone replacement therapy. Arthritis Rheum. 1995;38:902–6. doi: 10.1002/art.1780380705.
    1. Prummel MF, Wiersinga WM, Lips P, Sanders GT, Sauerwein HP. The course of biochemical parameters of bone turnover during treatment with corticosteroids. J Clin Endocrinol Metab. 1991;72:382–6. doi: 10.1210/jcem-72-2-382.
    1. Hari Kumar KV, Muthukrishnan J, Verma A, Modi KD. Correlation between bone markers and bone mineral density in postmenopausal women with osteoporosis. Endocr Pract. 2008;14:1102–7. doi: 10.4158/EP.14.9.1102.
    1. Godschalk MF, Downs RW. Effect of short-term glucocorticoids on serum osteocalcin in healthy young men. J Bone Miner Res. 1988;3:113–5. doi: 10.1002/jbmr.5650030117.
    1. Lems WF, Jacobs JW, Van Rijn HJ, Bijlsma JW. Changes in calcium and bone metabolism during treatment with low dose prednisone in young, healthy, male volunteers. Clin Rheumatol. 1995;14:420–4. doi: 10.1007/BF02207675.
    1. Garnero P, Sornay-Rendu E, Duboeuf F, Delmas PD. Markers of bone turnover predict postmenopausal forearm bone loss over 4 years: the OFELY study. J Bone Miner Res. 1999;14:1614–21. doi: 10.1359/jbmr.1999.14.9.1614.
    1. Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, Cormier C, Breart G, Meunier PJ, Delmas PD. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res. 1996;11:1531–8. doi: 10.1002/jbmr.5650111021.
    1. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993;341:72–5. doi: 10.1016/0140-6736(93)92555-8.
    1. Meunier PJ, Confavreux E, Tupinon I, Hardouin C, Delmas PD, Balena R. Prevention of early postmenopausal bone loss with cyclical etidronate therapy (a double-blind, placebo-controlled study and 1-year follow-up) J Clin Endocrinol Metab. 1997;82:2784–91.
    1. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996;11:337–49. doi: 10.1002/jbmr.5650110307.

Source: PubMed

3
Abonnieren