Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: a double-blind, placebo controlled study

Michael E Hoffer, Carey Balaban, Martin D Slade, Jack W Tsao, Barry Hoffer, Michael E Hoffer, Carey Balaban, Martin D Slade, Jack W Tsao, Barry Hoffer

Abstract

Background: Mild traumatic brain injury (mTBI) secondary to blast exposure is the most common battlefield injury in Southwest Asia. There has been little prospective work in the combat setting to test the efficacy of new countermeasures. The goal of this study was to compare the efficacy of N-acetyl cysteine (NAC) versus placebo on the symptoms associated with blast exposure mTBI in a combat setting.

Methods: This study was a randomized double blind, placebo-controlled study that was conducted on active duty service members at a forward deployed field hospital in Iraq. All symptomatic U.S. service members who were exposed to significant ordnance blast and who met the criteria for mTBI were offered participation in the study and 81 individuals agreed to participate. Individuals underwent a baseline evaluation and then were randomly assigned to receive either N-acetyl cysteine (NAC) or placebo for seven days. Each subject was re-evaluated at 3 and 7 days. Outcome measures were the presence of the following sequelae of mTBI: dizziness, hearing loss, headache, memory loss, sleep disturbances, and neurocognitive dysfunction. The resolution of these symptoms seven days after the blast exposure was the main outcome measure in this study. Logistic regression on the outcome of 'no day 7 symptoms' indicated that NAC treatment was significantly better than placebo (OR = 3.6, p = 0.006). Secondary analysis revealed subjects receiving NAC within 24 hours of blast had an 86% chance of symptom resolution with no reported side effects versus 42% for those seen early who received placebo.

Conclusion: This study, conducted in an active theatre of war, demonstrates that NAC, a safe pharmaceutical countermeasure, has beneficial effects on the severity and resolution of sequelae of blast induced mTBI. This is the first demonstration of an effective short term countermeasure for mTBI. Further work on long term outcomes and the potential use of NAC in civilian mTBI is warranted.

Trial registration: ClinicalTrials.gov NCT00822263.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Consort Flow Diagram.
Figure 1. Consort Flow Diagram.
Figure 2. The number of symptoms for…
Figure 2. The number of symptoms for four groups of patients.
The upper left panel shows results for all patients in the study. The upper right graph illustrates the impact of tympanic membrane perforations in the patients seen within 24 hours of blast exposure The distribution of the data on day 7 are shown for each group in the lower graphs, with a pie chart to indicate the percentage with no residual symptoms.

References

    1. Terrio H, Brenner LA, Ivins BJ, Cho JM, Helmick K, et al. (2009) Traumatic brain injury screening: preliminary findings in a US Army Brigade Combat Team. J Head Trauma Rehabil 24: 14–23.
    1. Elder GA, Cristian A (2009) Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care. Mt Sinai J Med 76: 111–118.
    1. Bryant RA (2008) Disentangling mild traumatic brain injury and stress reactions. New England Journal of Medicine 358: 525–526.
    1. Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, et al. (2008) Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N Engl J Med 358: 453–463.
    1. French LM, Mouratidis M, Dicianno B, Impink B (2009) Traumatic brain injury. In: Pasquina PF, Cooper RA, editors. Care of the Combat Amputee. Washington, D.C.: Borden Institute. pp. 399–414.
    1. Cuzzocrea S, Mazzon E, Costantino G, Serraino I, Dugo L, et al. (2000) Beneficial effects of n-acetylcysteine on ischaemic brain injury. British Journal of Pharmacology 130: 1219–1226.
    1. Khan M, Sekhon B, Jatana M, Giri S, Gilg AG, et al. (2004) Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. Journal of Neuroscience Research 76: 519–527.
    1. Sekhon B, Sekhon C, Khan M, Patel SJ, Singh I, et al. (2003) N-Acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Research 971: 1–8.
    1. Hicdonmez T, Kanter M, Tiryaki M, Parsak T, Cobanoglu S (2006) Neuroprotective effects of N-acetylcysteine on experimental closed head trauma in rats. Neurochemistry Research 31: 473–481.
    1. Hart AM, Terenghi G, Kellerth J-O, Wiberg M (2004) Sensory neuroprotection, mitochondrial preservation, and therapeutic potential of N-acetyl-cysteine after nerve injury. Neuroscience 125: 91–101.
    1. Bielefeld EC, Kopke RD, Jackson RL, Coleman JK, Liu J, et al. (2007) Noise protection with N-acetyl-l-cysteine (NAC) using a variety of noise exposures, NAC doses, and routes of administration. Acta Otolaryngol 127: 914–919.
    1. Kopke RD, Jackson RL, Coleman JK, Liu J, Bielefeld EC, et al. (2007) NAC for noise: from the bench top to the clinic. Hearing Research 226: 114–125.
    1. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacological Reviews 54: 271–284.
    1. Pahan K, Sheikh FG, Namboodiri AMS, Singh I (1998) N-acetyl cysteine inhibits induction of NO production by endotoxin or cytokine stimulated rat peritoneal macrophages, C6 glial cells and astrocytes. Free Radical Biology & Medicine 24: 39–48.
    1. Santangelo F (2003) Intracellular thiol concentration modulating inflammatory response: influence on the regulation of cell functions through cysteine prodrug approach. Current Medicinal Chemistry 10: 2599–2610.
    1. Moussawi K, Pacchioni A, Moran M, Olive MF, Gass JT, et al. (2009) N-Acetylcysteine reverses cocaine-induced metaplasticity. Nature Neuroscience 12: 182–189.
    1. Schubert MC, Tusa RJ, Grine LE, Herdman SJ (2004) Optimizing the sensitivity of the head thrust test for identifying vestibular hypofunction. Phys Ther 84: 151–158.
    1. Agrawal Y, Carey JP, Hoffman HJ, Sklare DA, Schubert MC (2011) The modified Romberg Balance Test: normative data in U.S. adults. Otol Neurotol 32: 309–311.
    1. Marchetti GF, Whitney SL, Blatt PJ, Morris LO, Vance JM (2008) Temporal and spatial characteristics of gait during performance of the Dynamic Gait Index in people with and people without balance or vestibular disorders. Phys Ther 88: 640–651.
    1. Pocock SJ (1983) Clinical Trials: A Practical Approach. London: Wiley-Blackwell. 266 p.
    1. Ruff RM, Light RH, Parker SB, Levin HS (1996) Benton Controlled Oral Word Association Test: reliability and updated norms. Clinical Neuropsychol 11: 329–338.
    1. Reitan RM (1992) Trail Making Test Manual for Administration and Scoring. Tucson, AZ: Ralph M. Reitan.
    1. Spreen O, Strauss E (1998) Language tests. In: Spreen O, Strauss E, editors. Compendium of Neuropsychological Tests Second ed. New York: Oxford University Press. pp. 447–459.
    1. Tombaugh TN, Rees L, McIntyre N (1998) Visual, visuomotor, and auditory tests. In: Spreen O, Strauss E, editors. A Compendium of Neuropsychological Tests. Second ed. New York: Oxford University Press. pp. 481–551.
    1. Wagner S, Helmreich I, Dahmen N, Lieb K, Tadic A (2011) Reliability of three alternate forms of theTrail Making Tests A and B. Archives of Clinical Neuropsychology 26: 314–321.
    1. Tombaugh TN (2004) Trail Making Test A and B: Normative data stratified by age and education. Archives of Clinical Neuropsychology 19: 203–214.
    1. Dupont WD, Plummer WD (1990) Power and sample size calculations: a review and computer program. Controlled Clinical Trials 11: 116–128.
    1. Gabaix X, Laibson D (2008) The Seven Properties of Good Models. In: Caplin A, Schotter A, editors. The Foundations of Positive and Normative Economics. New York: Oxford University Press. pp. 292–299.
    1. Cave KM, Cornish EM, Chandler DW (2007) Blast injury of the ear: clinical update from the global war on terror. Military Medicine 172: 726–730.
    1. Garth RJN (1994) Blast injury of the auditory system: a review of mechanisms and pathology. J Laryngol Otol 108: 925–929.
    1. Lew HL, Jerger JF, Guillory SB, Henry JA (2007) Auditory dysfunction in traumatic brain injury. J Rehab Research, Development 44: 921–928.
    1. Ritenour AE, Wickley A, Ritenour JS, Kriete BR, Blackbourne LH, et al. (2008) Tympanic membrane perforation and hearing loss from blast overpressure in Operation Enduring Freedom and Operation Iraqi Freedom wounded. J Trauma 64: S174–S178.
    1. James DJ, Pickett VC, Burden KJ, Cheesman A (1982) The response of the human ear to blast. Part 1: The effect on the ear drum of a short duration, fast rising pressure wave. Army Weapons Research Establishment/Chemical Defense Establishment Report No. 04/82.
    1. Jensen JH, Bonding P (1993) Experimental pressure induced rupture of the tympanic membrane in man. Acta Otolaryngol 113: 62–67.
    1. Hoffer ME, Balaban CD, Gottschall KR, Balough BJ, Maddox MR, et al. (2010) Blast exposure: vestibular consequences and associated characteristics. Otology & Neurotology 31: 232–236.
    1. Tsai S-Y, Hayashi T, Harvey BK, Wang Y, Wu WW, et al. (2009) Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving. Rac1·GTP pathway PNAS doi:.
    1. Saljo A, Bao F, Hamberger A, Haglid KG, Hansson HA (2001) Exposure to short-lasting impulse noise causes microglial and astroglial cell activation in the adult rat brain. Pathophysiology 8: 105–111.
    1. Saljo A, Huang YL, Hansson HA (2003) Impulse noise transiently increased the permeability of nerve and glial cell membranes, an effect accentuated by a recent brain injury. J Neurotrauma 20: 787–794.
    1. Saljo A, Jingshan S, Hamberger A, Hansson HA, Haglid KG (2002) Exposure to short-lasting impulse noise causes neuronal c-Jun expression and induction of apoptosis in the adult rat brain. J Neurotrauma 19: 985–991.
    1. Saljo A, Arrhen F, Bolouri H, Mayorga M, Hamberger A (2008) Neuropathology and pressure in the pig brain resulting from low-impulse noise exposure. J Neurotrauma 25: 1397–1406.
    1. Balaban CD (2012) Blast-Induced Mild Traumatic Brain Injury: A Translational Scientific Approach. In: Giordano J, Waters P, editors. Brain Injury and Stroke: Pathology and Implications for Care. Arlington, VA: Potomac Institute Press. In press.
    1. Rubovitch V, Ten-Bosch M, Zohar O, Harrison CR, Tempel-Brami C, et al. (2011) A mouse model of blast-induced mild traumatic brain injury. Exp Neurol 232: 280–289.
    1. De Vries H, Kuiper J, De Boer AG, Van Berkel TJC, Breimer DD (1996) The blood-brain barrier in neuroinflammatory diseases. Pharmacological Reviews 49: 143–154.
    1. Stranahan AM, Zhou Y, Martin B, Maudsley S (2009) Pharmacomimetics of exercise: novel approaches for hippocampally-targeted neuroprotective efforts. Current Medicinal Chemistry 16: 4668–4678.
    1. Pereira TV, Horwitz RI, Ioannidis JPA (2012) Empirical evaluation of very large treatment effects of medical interventions. JAMA 308: 1676–1684.
    1. Tweedie D, Milman A, Holloway HW, Li Y, Harvey BK, et al. (2007) Apoptotic and behavioral sequelae of mild brain trauma in mice. J Neurosci Res 85: 805–815.

Source: PubMed

3
Abonnieren