Neurophysiological and psychophysical effects of dry versus sham needling of the infraspinatus muscle in patients with chronic shoulder pain: a randomized feasibility study

Antoine Laramée, Guillaume Léonard, Mélanie Morin, Mélanie Roch, Nathaly Gaudreault, Antoine Laramée, Guillaume Léonard, Mélanie Morin, Mélanie Roch, Nathaly Gaudreault

Abstract

Background: Dry needling (DN) is increasingly used for treating myofascial trigger points (MTrPs) and has shown significant effects on pain and function. This study aimed to assess feasibility of conducting a randomized sham-controlled trial and to collect preliminary data on the effects of infraspinatus DN on corticospinal excitability and mechanical pain sensitivity.

Method: This randomized feasibility study included adults with chronic non-traumatic shoulder pain and a infraspinatus MTrP. Participants were randomized to receive real DN or sham DN in the infraspinatus MTrP. Feasibility outcomes included data pertaining to recruitment, retention of participants, completeness and safety of assessment procedures. Neurophysiological and psychophysical outcomes included corticospinal excitability and mechanical pain sensitivity measured by active motor threshold (aMT) and pressure pain threshold (PPT), respectively. They were assessed at baseline, immediately after and 24 h post-intervention.

Results: Twenty-one participants were recruited over a 6-month period. Nineteen participants completed the treatment and follow-up assessment. Motor evoked potential responses were discernible in all but 1 participant. Only 1 minor adverse event related to transcranial magnetic stimulation (mild headache) affected the measurements. No DN adverse effects were recorded in both groups. An overall completeness rate of 81% was reached, with 70% completeness in the DN group and 91% in the sham group. Data analysis revealed that real DN increased corticospinal excitability (reduced aMT) 24 h post-intervention (Mdn = - 5.96% MSO, IQR = 5.17, p = 0.04) and that sham DN triggered similar responses immediately after the intervention (Mdn = - 1.93% MSO, IQR = 1.11, p = 0.03). Increased mechanical pain sensitivity (reduced PPT) was significant only in the sham group, both immediately (Mdn = - 0.44 kg/cm2, IQR = 0.49, p = 0.01) and 24 h post-intervention (Mdn = - 0.52 kg/cm2, IQR = 1.02, p = 0.02). Changes in corticospinal excitability was positively correlated with changes in mechanical pain sensitivity in the DN group, both immediately (r = 0.77, p = 0.02) and 24 h post-intervention (r = 0.75, p = 0.05).

Conclusion: The present study demonstrates the feasibility of quantifying the neurophysiological and psychophysical effects of DN, and provides recommendations and guidelines for future studies. Moreover, it provides preliminary evidence that DN may increase corticospinal excitability of the infraspinatus muscle in patients with chronic shoulder pain and that the relationship of neurophysiological and psychophysical effects is promising to better understand its mechanisms of action.

Trial registration: NCT04316793 ; retrospectively registered November 3, 2020.

Keywords: Dry needling; Myofascial trigger point; Neurophysiological effect; Pressure pain threshold; Sham needling; Transcranial magnetic stimulation.

Conflict of interest statement

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flow diagram showing enrollment, group randomization and follow-up DN: Dry needling; TMS: Transcranial magnetic stimulation
Fig. 2
Fig. 2
Relationship between neurophysiological and psychophysical outcomes Active motor threshold (aMT) results are expressed as a percentage of the maximum stimulator output (%MSO); Pressure pain threshold (PPT) results are expressed in kg/cm2; ΔT1_T2: Delta score between baseline and immediately post-intervention; ΔT1_T3: Delta score between baseline and 24 h post-intervention

References

    1. IASP, 2017- Musculoskeletal Pain Fact Sheets [Internet]. 2017 [cited 2020 Apr 30]. Available from:
    1. Kietrys DM, Palombaro KM, Azzaretto E, Hubler R, Schaller B, Schlussel JM, Tucker M. Effectiveness of dry needling for upper-quarter myofascial pain: a systematic review and Meta-analysis. J Orthop Sports Phys Ther. 2013;43(9):620–634. doi: 10.2519/jospt.2013.4668.
    1. Chiarotto A, Clijsen R, Fernandez-de-Las-Penas C, Barbero M. Prevalence of myofascial trigger points in spinal disorders: a systematic review and Meta-analysis. Arch Phys Med Rehabil. 2016;97(2):316–337. doi: 10.1016/j.apmr.2015.09.021.
    1. Fernández-de-Las-Peñas C, Dommerholt J. International Consensus on Diagnostic Criteria and Clinical Considerations of Myofascial Trigger Points: A Delphi Study. Pain Med Malden Mass. 2018 01;19(1):142–150.
    1. Simons DG, Travell JG, Simons LS. Travell & Simons’ myofascial pain and dysfunction: upper half of body. Lippincott Williams & Wilkins; 1999.
    1. Bron C, Dommerholt J, Stegenga B, Wensing M, Oostendorp RA. High prevalence of shoulder girdle muscles with myofascial trigger points in patients with shoulder pain. BMC Musculoskelet Disord. 2011;12(1):139. doi: 10.1186/1471-2474-12-139.
    1. Hidalgo-Lozano A, Fernández-de-las-Peñas C, Alonso-Blanco C, Ge H-Y, Arendt-Nielsen L, Arroyo-Morales M. Muscle trigger points and pressure pain hyperalgesia in the shoulder muscles in patients with unilateral shoulder impingement: a blinded, controlled study. Exp Brain Res. 2010;202(4):915–925. doi: 10.1007/s00221-010-2196-4.
    1. Poveda-Pagán EJ, Lozano-Quijada C, Segura-Heras JV, Peral-Berna M, Lumbreras B. Referred pain patterns of the infraspinatus muscle elicited by deep dry needling and manual palpation. J Altern Complement Med N Y N. 2017;23(11):890–896. doi: 10.1089/acm.2016.0306.
    1. Cagnie B, Barbe T, De Ridder E, Van Oosterwijck J, Cools A, Danneels L. The influence of dry needling of the trapezius muscle on muscle blood flow and oxygenation. J Manip Physiol Ther. 2012;35(9):685–691. doi: 10.1016/j.jmpt.2012.10.005.
    1. Dunning J, Butts R, Mourad F, Young I, Flannagan S, Perreault T. Dry needling: a literature review with implications for clinical practice guidelines. Phys Ther Rev. 2014;19(4):252–265. doi: 10.1179/108331913X13844245102034.
    1. Tekin L, Akarsu S, Durmuş O, Cakar E, Dinçer U, Kıralp MZ. The effect of dry needling in the treatment of myofascial pain syndrome: a randomized double-blinded placebo-controlled trial. Clin Rheumatol. 2013;32(3):309–315. doi: 10.1007/s10067-012-2112-3.
    1. Espejo-Antúnez L, Tejeda JF-H, Albornoz-Cabello M, Rodríguez-Mansilla J, de la Cruz-Torres B, Ribeiro F, Silva AG. Dry needling in the management of myofascial trigger points: a systematic review of randomized controlled trials. Complement Ther Med. 2017;33:46–57. doi: 10.1016/j.ctim.2017.06.003.
    1. Gattie E, Cleland JA, Snodgrass S. The effectiveness of trigger point dry needling for musculoskeletal conditions by physical therapists: a systematic review and Meta-analysis. J Orthop Sports Phys Ther. 2017;47(3):133–149. doi: 10.2519/jospt.2017.7096.
    1. Hall ML, Mackie AC, Ribeiro DC. Effects of dry needling trigger point therapy in the shoulder region on patients with upper extremity pain and dysfunction: a systematic review with meta-analysis. Physiotherapy. 2018;104(2):167–177. doi: 10.1016/j.physio.2017.08.001.
    1. Liu L, Huang Q-M, Liu Q-G, Ye G, Bo C-Z, Chen M-J, Li P. Effectiveness of dry needling for myofascial trigger points associated with neck and shoulder pain: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2015;96(5):944–955. doi: 10.1016/j.apmr.2014.12.015.
    1. Boyles R, Fowler R, Ramsey D, Burrows E. Effectiveness of trigger point dry needling for multiple body regions: a systematic review. J Man Manip Ther. 2015;23(5):276–293. doi: 10.1179/2042618615Y.0000000014.
    1. Callejas-Marcos I, Torrijos-Bravo A, Torres-Chica B, Ortiz-Gutiérrez RM. Efficacy of dry needling in neck pain compared with other physiotherapy techniques: a systematic review. Rehabilitacion. 2019;53(3):189–197. doi: 10.1016/j.rh.2018.11.004.
    1. Liu L, Huang Q-M, Liu Q-G, Thitham N, Li L-H, Ma Y-T, et al. Evidence for Dry Needling in the Management of Myofascial Trigger Points Associated With Low Back Pain: A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil. 2018;99(1):144–152.e2. doi: 10.1016/j.apmr.2017.06.008.
    1. Lund I, Lundeberg T. Are minimal, superficial or sham acupuncture procedures acceptable as inert placebo controls? Acupunct Med J Br Med Acupunct Soc. 2006;24(1):13–15. doi: 10.1136/aim.24.1.13.
    1. Cagnie B, Dewitte V, Barbe T, Timmermans F, Delrue N, Meeus M. Physiologic effects of dry needling. Curr Pain Headache Rep. 2013;17(8):348. doi: 10.1007/s11916-013-0348-5.
    1. Abbaszadeh-Amirdehi M, Ansari NN, Naghdi S, Olyaei G, Nourbakhsh MR. Therapeutic effects of dry needling in patients with upper trapezius myofascial trigger points. Acupunct Med J Br Med Acupunct Soc. 2017;35(2):85–92. doi: 10.1136/acupmed-2016-011082.
    1. Chen JT, Chung KC, Hou CR, Kuan TS, Chen SM, Hong CZ. Inhibitory effect of dry needling on the spontaneous electrical activity recorded from myofascial trigger spots of rabbit skeletal muscle. Am J Phys Med Rehabil. 2001;80(10):729–735. doi: 10.1097/00002060-200110000-00004.
    1. Abbaszadeh-Amirdehi M, Ansari NN, Naghdi S, Olyaei G, Nourbakhsh MR. Neurophysiological and clinical effects of dry needling in patients with upper trapezius myofascial trigger points. J Bodyw Mov Ther. 2017;21(1):48–52. doi: 10.1016/j.jbmt.2016.04.014.
    1. Anand S, Hotson J. Transcranial magnetic stimulation: neurophysiological applications and safety. Brain Cogn. 2002;50(3):366–386. doi: 10.1016/S0278-2626(02)00512-2.
    1. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety of TMS consensus group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2009;120(12):2008–2039. doi: 10.1016/j.clinph.2009.08.016.
    1. Ngomo S, Mercier C, Bouyer LJ, Savoie A, Roy J-S. Alterations in central motor representation increase over time in individuals with rotator cuff tendinopathy. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2015;126(2):365–371. doi: 10.1016/j.clinph.2014.05.035.
    1. Whitehead AL, Julious SA, Cooper CL, Campbell MJ. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat Methods Med Res. 2016;25(3):1057–1073. doi: 10.1177/0962280215588241.
    1. Kieser M, Wassmer G. On the use of the upper confidence limit for the variance from a pilot sample for sample size determination. Biom J. 1996;38(8):941–949. doi: 10.1002/bimj.4710380806.
    1. Roch M, Morin M, Gaudreault N. The MyotonPRO: a reliable and valid tool for quantifying the viscoelastic properties of a trigger point on the infraspinatus in non-traumatic chronic shoulder pain. J Bodyw Mov Ther [Internet]. 2020 May 6 [cited 2020 Jun 16]; Available from:
    1. Puncture physiothérapique: cours de base [Internet]. OPPQ. [cited 2020 May 4]. Available from:
    1. Fernández-de-Las-Peñas C, Nijs J. Trigger point dry needling for the treatment of myofascial pain syndrome: current perspectives within a pain neuroscience paradigm. J Pain Res Macclesfield. 2019;12:1899–1911. doi: 10.2147/JPR.S154728.
    1. Ngomo S, Leonard G, Moffet H, Mercier C. Comparison of transcranial magnetic stimulation measures obtained at rest and under active conditions and their reliability. J Neurosci Methods. 2012;205(1):65–71. doi: 10.1016/j.jneumeth.2011.12.012.
    1. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. committee. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2015;126(6):1071–1107. doi: 10.1016/j.clinph.2015.02.001.
    1. Bradnam L, Shanahan EM, Hendy K, Reed A, Skipworth T, Visser A, Lennon S. Afferent inhibition and cortical silent periods in shoulder primary motor cortex and effect of a suprascapular nerve block in people experiencing chronic shoulder pain. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2016;127(1):769–778. doi: 10.1016/j.clinph.2015.03.012.
    1. Houde F, Laroche S, Thivierge V, Martel M, Harvey M-P, Daigle F, Olivares-Marchant A, Beaulieu LD, Leonard G. Transcranial magnetic stimulation measures in the elderly: reliability. Smallest Detectable Change and the Potential Influence of Lifestyle Habits Front Aging Neurosci. 2018;10:379. doi: 10.3389/fnagi.2018.00379.
    1. Ngomo S, Mercier C, Roy J-S. Cortical mapping of the infraspinatus muscle in healthy individuals. BMC Neurosci. 2013;14(1):52. doi: 10.1186/1471-2202-14-52.
    1. Park G, Kim CW, Park SB, Kim MJ, Jang SH. Reliability and usefulness of the pressure pain threshold measurement in patients with myofascial pain. Ann Rehabil Med. 2011;35(3):412–417. doi: 10.5535/arm.2011.35.3.412.
    1. Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen. 2012;141(1):2–18. doi: 10.1037/a0024338.
    1. Calvo-Lobo C, Diez-Vega I, Martínez-Pascual B, Fernández-Martínez S, de la Cueva-Reguera M, Garrosa-Martín G, Rodríguez-Sanz D. Tensiomyography, sonoelastography, and mechanosensitivity differences between active, latent, and control low back myofascial trigger points: a cross-sectional study. Medicine (Baltimore) 2017;96(10):e6287. doi: 10.1097/MD.0000000000006287.
    1. Zelle BA, Bhandari M, Sanchez AI, Probst C, Pape H-C. Loss of follow-up in orthopaedic trauma: is 80% follow-up still acceptable? J Orthop Trauma. 2013;27(3):177–181. doi: 10.1097/BOT.0b013e31825cf367.
    1. Janicak PG, O’Reardon JP, Sampson SM, Husain MM, Lisanby SH, Rado JT, et al. Transcranial magnetic stimulation in the treatment of major depressive disorder: a comprehensive summary of safety experience from acute exposure, extended exposure, and during reintroduction treatment. J Clin Psychiatry. 2008;69(2):222–232. doi: 10.4088/JCP.v69n0208.
    1. Lin Y-L, Christie A, Karduna A. Excitability of the infraspinatus, but not the middle deltoid, is affected by shoulder elevation angle. Exp Brain Res. 2015;233(6):1837–1843. doi: 10.1007/s00221-015-4255-3.
    1. Roberts LV, Stinear CM, Lewis GN, Byblow WD. Task-dependent modulation of propriospinal inputs to human shoulder. J Neurophysiol. 2008;100(4):2109–2114. doi: 10.1152/jn.90786.2008.
    1. Thielscher A, Opitz A, Windhoff M. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. NeuroImage. 2011;54(1):234–243. doi: 10.1016/j.neuroimage.2010.07.061.
    1. Brady S, McEvoy J, Dommerholt J, Doody C. Adverse events following trigger point dry needling: a prospective survey of chartered physiotherapists. J Man Manip Ther. 2014;22(3):134–140. doi: 10.1179/2042618613Y.0000000044.
    1. Perreault T, Dunning J, Butts R. The local twitch response during trigger point dry needling: is it necessary for successful outcomes? J Bodyw Mov Ther. 2017;21(4):940–947. doi: 10.1016/j.jbmt.2017.03.008.
    1. Reinold MM, Wilk KE, Fleisig GS, Zheng N, Barrentine SW, Chmielewski T, Cody RC, Jameson GG, Andrews JR. Electromyographic analysis of the rotator cuff and deltoid musculature during common shoulder external rotation exercises. J Orthop Sports Phys Ther. 2004;34(7):385–394. doi: 10.2519/jospt.2004.34.7.385.
    1. Burbank KM, Stevenson JH, Czarnecki GR, Dorfman J. Chronic Shouler pain part I: evaluation and diagnosis. Am Fam Physician. 2008;77(4):453–460.
    1. Loo CK, McFarquhar TF, Mitchell PB. A review of the safety of repetitive transcranial magnetic stimulation as a clinical treatment for depression. Int J Neuropsychopharmacol. 2008;11(1):131–147. doi: 10.1017/S1461145707007717.
    1. Parker RS, Lewis GN, Rice DA, McNair PJ. Is motor cortical excitability altered in people with chronic pain? A systematic review and Meta-analysis. Brain Stimulat. 2016;9(4):488–500. doi: 10.1016/j.brs.2016.03.020.
    1. Chang W-J, O’Connell NE, Beckenkamp PR, Alhassani G, Liston MB, Schabrun SM. Altered primary motor cortex structure, organization, and function in chronic pain: a systematic review and Meta-analysis. J Pain. 2018;19(4):341–359. doi: 10.1016/j.jpain.2017.10.007.
    1. Lo YL, Cui SL. Acupuncture and the modulation of cortical excitability. Neuroreport. 2003;14(9):1229–1231. doi: 10.1097/00001756-200307010-00008.
    1. Lo YL, Cui SL, Fook-Chong S. The effect of acupuncture on motor cortex excitability and plasticity. Neurosci Lett. 2005;384(1–2):145–149. doi: 10.1016/j.neulet.2005.04.083.
    1. Maioli C, Falciati L, Marangon M, Perini S, Losio A. Short- and long-term modulation of upper limb motor-evoked potentials induced by acupuncture. Eur J Neurosci. 2006;23(7):1931–1938. doi: 10.1111/j.1460-9568.2006.04698.x.
    1. Zunhammer M, Eichhammer P, Franz J, Hajak G, Busch V. Effects of acupuncture needle penetration on motor system excitability. Neurophysiol Clin Clin Neurophysiol. 2012;42(4):225–230. doi: 10.1016/j.neucli.2012.02.134.
    1. Sun Z-G, Pi Y-L, Zhang J, Wang M, Zou J, Wu W. Effect of acupuncture at ST36 on motor cortical excitation and inhibition. Brain Behav. 2019;9(9):e01370. doi: 10.1002/brb3.1370.
    1. Musial F. Acupuncture for the Treatment of Pain – A Mega-Placebo? Front Neurosci [Internet]. 2019 Oct 17 [cited 2020 Sep 22];13. Available from:
    1. Vickers AJ, Vertosick EA, Lewith G, MacPherson H, Foster NE, Sherman KJ, Irnich D, Witt CM, Linde K, Acupuncture Trialists' Collaboration Acupuncture for chronic pain: update of an individual patient data meta-analysis. J Pain Off J Am Pain Soc. 2018;19(5):455–474. doi: 10.1016/j.jpain.2017.11.005.
    1. Zhao Z-Q. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol. 2008;85(4):355–375. doi: 10.1016/j.pneurobio.2008.05.004.
    1. Fedele L, Marchini M, Acaia B, Garagiola U, Tiengo M. Dynamics and significance of placebo response in primary dysmenorrhea. Pain. 1989;36(1):43–47. doi: 10.1016/0304-3959(89)90110-3.
    1. Charles D, Hudgins T, MacNaughton J, Newman E, Tan J, Wigger M. A systematic review of manual therapy techniques, dry cupping and dry needling in the reduction of myofascial pain and myofascial trigger points. J Bodyw Mov Ther. 2019;23(3):539–546. doi: 10.1016/j.jbmt.2019.04.001.
    1. Campa-Moran I, Rey-Gudin E, Fernández-Carnero J, Paris-Alemany A, Gil-Martinez A, Lerma Lara S, et al. Comparison of dry needling versus orthopedic manual therapy in patients with myofascial chronic neck pain: a single-blind. Randomized Pilot Study Pain Res Treat. 2015;2015:327307.
    1. Damien J, Colloca L, Bellei-Rodriguez C-É, Marchand S. Pain modulation: from conditioned pain modulation to placebo and nocebo effects in experimental and clinical pain. Int Rev Neurobiol. 2018;139:255–296. doi: 10.1016/bs.irn.2018.07.024.
    1. Hsieh Y-L, Yang S-A, Yang C-C, Chou L-W. Dry needling at myofascial trigger spots of rabbit skeletal muscles modulates the biochemicals associated with pain, inflammation, and hypoxia. Evid-Based Complement Altern Med ECAM. 2012;2012:342165.
    1. Shah JP, Danoff JV, Desai MJ, Parikh S, Nakamura LY, Phillips TM, Gerber LH. Biochemicals associated with pain and inflammation are elevated in sites near to and remote from active myofascial trigger points. Arch Phys Med Rehabil. 2008;89(1):16–23. doi: 10.1016/j.apmr.2007.10.018.
    1. Shah JP, Gilliams EA. Uncovering the biochemical milieu of myofascial trigger points using in vivo microdialysis: an application of muscle pain concepts to myofascial pain syndrome. J Bodyw Mov Ther. 2008;12(4):371–384. doi: 10.1016/j.jbmt.2008.06.006.
    1. Granovsky Y, Sprecher E, Sinai A. Motor corticospinal excitability: a novel facet of pain modulation? Pain Rep [Internet]. 2019 Mar 8 [cited 2020 Apr 17];4(2). Available from:
    1. Botelho LM, Morales-Quezada L, Rozisky JR, Brietzke AP, Torres ILS, Deitos A, et al. A Framework for Understanding the Relationship between Descending Pain Modulation, Motor Corticospinal, and Neuroplasticity Regulation Systems in Chronic Myofascial Pain. Front Hum Neurosci [Internet]. 2016 [cited 2020 Apr 17];10. Available from:
    1. Vidor LP, Torres ILS, Medeiros LF, Dussán-Sarria JA, Dall’agnol L, Deitos A, et al. Association of anxiety with intracortical inhibition and descending pain modulation in chronic myofascial pain syndrome. BMC Neurosci. 2014;15(1):42. doi: 10.1186/1471-2202-15-42.
    1. Rattanavong V. Manipulation de la perception de la composante affective de la douleur. [(Master’s thesis)]. [Quebec, Canada]: Universite de Sherbrooke, Sherbrooke.; 2014.
    1. Castillo Saavedra L, Mendonca M, Fregni F. Role of the primary motor cortex in the maintenance and treatment of pain in fibromyalgia. Med Hypotheses. 2014;83(3):332–336. doi: 10.1016/j.mehy.2014.06.007.
    1. Simons DG. Review of enigmatic MTrPs as a common cause of enigmatic musculoskeletal pain and dysfunction. J Electromyogr Kinesiol Off J Int Soc Electrophysiol Kinesiol. 2004;14(1):95–107. doi: 10.1016/j.jelekin.2003.09.018.
    1. Daube JR, Rubin DI. Nerve Conduction Studies. In: Aminoff’s Electrodiagnosis in Clinical Neurology [Internet]. 6th ed. Philadelphia, PA; 2012 [cited 2020 Apr 29]. p. 289–325. Available from:
    1. Fisher MA. Chapter 18 - H-Reflex and F-Response Studies. In: Aminoff MJ, editor. Aminoff’s Electrodiagnosis in Clinical Neurology (Sixth Edition) [Internet]. London: W.B. Saunders; 2012 [cited 2020 Apr 27]. p. 407–20. Available from:
    1. Buschbacher RM, Weir SK, Bentley JG, Cottrell E. Normal motor nerve conduction studies using surface electrode recording from the supraspinatus, infraspinatus, deltoid, and biceps. PM R. 2009;1(2):101–106. doi: 10.1016/j.pmrj.2008.08.002.
    1. Casazza BA, Young JL, Press JP, Heinemann AW. Suprascapular nerve conduction: a comparative analysis in normal subjects. Electromyogr Clin Neurophysiol. 1998;38(3):153–160.
    1. Varghese G. Re: suprascapular nerve studies—surface versus needle pickup electrodes. PM&R. 2009;1(8):785. doi: 10.1016/j.pmrj.2009.06.005.
    1. Shah JP, Phillips TM, Danoff JV, Gerber LH. An in vivo microanalytical technique for measuring the local biochemical milieu of human skeletal muscle. J Appl Physiol Bethesda Md 1985. 2005;99(5):1977–1984.

Source: PubMed

3
Abonnieren