β-Alanine supplementation increased physical performance and improved executive function following endurance exercise in middle aged individuals

Taylor Furst, Alyssa Massaro, Courtney Miller, Brian T Williams, Zach M LaMacchia, Peter J Horvath, Taylor Furst, Alyssa Massaro, Courtney Miller, Brian T Williams, Zach M LaMacchia, Peter J Horvath

Abstract

Background: Sarcopenia, a reduction in muscle mass and function seen in aging populations, may be countered by improving systemic carnosine stores via beta-Alanine (β-alanine) supplementation. Increasing systemic carnosine levels may result in enhanced anti-oxidant, neuro-protective and pH buffering capabilities. This enhancement should result in improved exercise capacity and executive function.

Methods: Twelve healthy adults (average age = 60.5 ± 8.6 yrs, weight = 81.5 ± 12.6 kg) were randomized and given either 2.4 g/d of β-alanine (BA) or Placebo (PL) for 28 days. Exercise capacity was tested via bouts on a cycle ergometer at 70% VO2 peak. Executive function was measured by Stroop Tests 5 min before exercise (T1), immediately before exercise (T2), immediately following fatigue (T3), and 5 min after fatigue (T4). Lactate measures were taken pre/post exercise. Heart rate, Rating of Perceived Exertion (RPE) and VO2 were recorded throughout exercise testing.

Results: PRE average time-to-exhaustion (TTE) for the PL and BA group were not significantly different (Mean ± SD; 9.4 ± 1.4mins vs 11.1 ± 2.4mins, respectively, P = 0.7). POST BA supplemented subjects cycled significantly longer than PRE (14.6 ± 3.8mins vs 11.1 ± 2.4mins, respectively, P = 0.04) while those given PL did not (8.7 ± 2.4mins vs 9.4 ± 1.4mins, respectively, P = 0.7). PL subjects were slower in completing the Stroop test POST at T4 compared to T3 (T3 = - 13.3 ± 8.6% vs T4 = 2.1 ± 8.3%, P = 0.04), while the BA group (T3 = - 9.2 ± 6.4% vs T4 = - 2.5 ± 3.5%, P = 0.5) was not. POST lactate production expressed a trend when comparing treatments, as the BA group produced 2.4 ± 2.6 mmol/L more lactate than the PL group (P = 0.06). Within group lactate production for BA (P = 0.4) and PL (P = 0.5), RPE (P = 0.9) and heart rate (P = 0.7) did not differ with supplementation.

Conclusion: BA supplementation increased exercise capacity and eliminated endurance exercise induced declines in executive function seen after recovery. Increased POST TTE coupled with similar PRE vs POST lactate production indicates an improvement in the ability of BA to extend exercise durations. Furthermore, by countering endurance exercise's accompanying deficits in executive function, the aging population can maintain benefits from exercise with improved safety.

Keywords: Carnosine; Executive function; Exercise; Lactate; Stroop test; Time-to-exhaustion; β-Alanine.

Conflict of interest statement

Ethics approval and consent to participate

Before any research activity took place, The State University of New York University at Buffalo’s Institutional Review Board approved of the design of this study. All subjects were asked to read and sign an Informed Consent prior to conducting any form of research activity during their first visit.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
PRE vs POST Δ TTE. Results are represented as boxplots with * P < 0.05. Data represents mean ± SD. POST BA TTE was significantly longer than PRE (14.6 ± 3.8mins vs 11.1 ± 2.4mins, respectively, P = 0.04); PL TTE did not significantly change (PRE, 9.4 ± 1.4mins; POST, 8.7 ± 2.4mins, P = 0.7). PL, Placebo; BA, β-Alanine
Fig. 2
Fig. 2
PRE vs POST lactate production. Results are represented as boxplots. Data represent mean ± SD. No change in lactate production within either group. When comparing treatments, POST lactate production expressed a trend as BA produced more lactate than PL (P = 0.06). PL, Placebo; BA, β-Alanine
Fig. 3
Fig. 3
Stroop test performance. Percent change from PRE to POST time to perform the Stroop test task of identifying the colors. Positive change represents a decline in executive function. Data represent mean ± SD. Results are represented with * P < 0.05. BA mediated the decline in executive function following recovery from fatigue (T3 vs T4) seen within PL (P = 0.04). PL, Placebo; BA, β-Alanine

References

    1. Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, Evans WJ. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330:1769–1775. doi: 10.1056/NEJM199406233302501.
    1. del Favero S, Roschel H, Solis MY, Hayashi AP, Artioli GG, Otaduy MC, Gualano B. Beta-alanine (Carnosyn™) supplementation in elderly subjects (60-80 years): effects on muscle carnosine content and physical capacity. Amino Acids. 2012;43:49–56. doi: 10.1007/s00726-011-1190-x.
    1. McCormack WP, Stout JR, Emerson NS, Scanlon TC, Warren AM, Wells AJ, Hoffman JR. Oral nutritional supplement fortified with beta-alanine improves physical working capacity in older adults: a randomized, placebo-controlled study. Exp Gerontol. 2013;48:933–939. doi: 10.1016/j.exger.2013.06.003.
    1. Stout JR, Graves BS, Smith AE, Hartman MJ, Cramer JT, Beck TW, Harris RC. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): a double-blind randomized study. J Int Soc Sports Nutr. 2008;5:21. doi: 10.1186/1550-2783-5-21.
    1. Stuerenburg HJ, Kunze K. Concentrations of free carnosine (a putative membrane-protective antioxidant) in human muscle biopsies and rat muscles. Arch Gerontol Geriatr. 1999;29:107–113. doi: 10.1016/S0167-4943(99)00020-5.
    1. Artioli GG, Gualano B, Smith A, Stout J, Lancha AH., Jr Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc. 2010;42:1162–1173. doi: 10.1249/01.MSS.0000384497.49519.49.
    1. Bellia F, Vecchio G, Cuzzocrea S, Calabrese V, Rizzarelli E. Neuroprotective features of carnosine in oxidative driven diseases. Mol Asp Med. 2011;32:258–266. doi: 10.1016/j.mam.2011.10.009.
    1. Culbertson JY, Kreider RB, Greenwood M, Cooke M. Effects of Beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrients. 2010;2:75–98. doi: 10.3390/nu2010075.
    1. Hoffman JR, Landau G, Stout JR, Dabora M, Moran DS, Sharvit N, Ostfeld I. Beta-alanine supplementation improves tactical performance but not cognitive function in combat soldiers. J Int Soc Sport Nutr. 2014;11:8. doi: 10.1186/1550-2783-11-15.
    1. Kendrick IP, Kim HJ, Harris RC, Kim CK, Dang VH, Lam TQ, Bui TT, Wise JA. The effect of 4 weeks beta-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres. Eur J Appl Physiol. 2009;106:131–138. doi: 10.1007/s00421-009-0998-5.
    1. Derave W, Everaert I, Beeckman S, Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med. 2010;40:247–263. doi: 10.2165/11530310-000000000-00000.
    1. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32:225–233. doi: 10.1007/s00726-006-0364-4.
    1. Guiotto A, Calderan A, Ruzza P, Borin G. Carnosine and carnosine-related antioxidants: a review. Curr Med Chem. 2005;12:2293–2315. doi: 10.2174/0929867054864796.
    1. Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010;39:321–333. doi: 10.1007/s00726-009-0443-4.
    1. Stegen S, Blancquaert L, Everaert I, Bex T, Taes Y, Calders P, Derave W. Meal and beta-alanine coingestion enhances muscle carnosine loading. Med Sci Sports Exerc. 2013;45:1478–1485. doi: 10.1249/MSS.0b013e31828ab073.
    1. Hoffman JR, Emerson NS, Stout JR. Beta-Alanine Supplementation. Curr Sport Med Rep. 2012;11:189–195. doi: 10.1249/JSR.0b013e3182604983.
    1. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30:279–289. doi: 10.1007/s00726-006-0299-9.
    1. Tobias G, Benatti FB, Painelli VD, Roschel H, Gualano B, Sale C, Artioli GG. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids. 2013;45:309–317. doi: 10.1007/s00726-013-1495-z.
    1. Williams BT, Horvath PJ, Burton HW, Leddy J, Wilding GE, Rosney DM, Shan G. The effect of pre exercise carbohydrate consumption on cognitive function. J Athl Enhancement. 2015;4:1.
    1. Tallon MJ, Harris RC, Maffulli N, Tarnopolsky MA. Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects. Biogerontology. 2007;8:129–137. doi: 10.1007/s10522-006-9038-6.
    1. Hoffman JR, Ostfeld I, Stout JR, Harris RC, Kaplan Z, Cohen H. Beta-alanine supplemented diets enhance behavioral resilience to stress exposure in an animal model of PTSD. Amino Acids. 2015;47:1247–1257. doi: 10.1007/s00726-015-1952-y.
    1. Solis MY, Cooper S, Hobson RM, Artioli GG, Otaduy MC, Roschel H, Robertson J, Martin D, Painelli VS, Harris RC, Gualano B, Sale C. Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study. PLoS One. 2015;10:16. doi: 10.1371/journal.pone.0123857.
    1. Decombaz J, Beaumont M, Vuichoud J, Bouisset F, Stellingwerff T. Effect of slow-release beta-alanine tablets on absorption kinetics and paresthesia. Amino Acids. 2012;43:67–76. doi: 10.1007/s00726-011-1169-7.
    1. Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, O'Kroy J. Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids. 2007;32:381–386. doi: 10.1007/s00726-006-0474-z.
    1. Jensen AR. The stroop color-word test - a review. Curr contents/Soc. Behav Sci. 1981;39(20)
    1. Provost SC, Woodward R. Effects of nicotine gum on repeated administration of the stroop test. Psychopharmacology. 1991;104:536–540. doi: 10.1007/BF02245662.
    1. Cohen J. Statistical power analysis for the behavioral sciences. Academic press. 2nd; 1988.
    1. Pollow D, Williams B, Joyce D, Horvath P. Caffeine does not affect improvements in cognition during prolonged high-intensity exercise in alert well-trained individuals. J Caffeine Res. 2016;6:163–171. doi: 10.1089/jcr.2016.0002.
    1. Homack S, Riccio CA. A meta-analysis of the sensitivity and specificity of the stroop color and word test with children. Arch Clin Neuropsychol. 2004;19:725–743. doi: 10.1016/j.acn.2003.09.003.
    1. Saunders B, Elliot-Sale K, Artioli GG, Swinton P, Dolan E, Roschel H, Sale C, Gualano B. β-Alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017;51:658–669. doi: 10.1136/bjsports-2016-096396.

Source: PubMed

3
Abonnieren