Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior

Mark Lyte, Mark Lyte

Abstract

The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior.

Keywords: behavior; enteric nervous system; hormones; microbial endocrinology; neuroendocrine; signaling.

Figures

https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4153777/bin/gmic-5-381-g1.jpg
Figure 1. The microbial endocrinology-based pathways by which neuroactive compounds produced by both the host and the microbiota can serve as a mechanism by which the brain and behavior can be modulated within the microbiota-gut-brain axis. Food ingested by the host contains both the substrates needed for neurochemical production by the host and the microbiota as well as fully functional neuroactive components (1). The microbiota in the gut is capable of either forming neurochemicals from the substrates present in the ingested food; or responding to the neuroactive food components themselves; or responding to neurochemicals secreted into the gut by components of the host enteric nervous system (2). Neurochemicals produced by the microbiota in the gut have two pathways by which to influence the host; they can either be taken up from the gut into the portal circulation (3) or they can directly interact with receptors found on components of the enteric nervous system which innervates the complete length of the gastrointestinal tract (2). Once in the portal circulation, microbiota-derived neurochemicals can influence components of the nervous system and ultimately the brain (4). Microbiota-derived neurochemicals can also influence components of the nervous system such as the brain through enteric nervous system-central nervous system communication (5). The result of either pathway (4) or (5) on the brain may result in an alteration of behavior or cognition (6) as well as food preferences and appetite (7)., As described in the text, this should not be viewed as a one-way direction of only gut-to-brain since the brain may influence the composition of the microbiota through the specific release of neurochemicals into the gut lumen (2).

References

    1. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69:52–60. doi: 10.1016/j.phrs.2012.10.020.
    1. Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J. Mood and gut feelings. Brain Behav Immun. 2010;24:9–16. doi: 10.1016/j.bbi.2009.05.058.
    1. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13:701–12. doi: 10.1038/nrn3346.
    1. Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu Rev Pathol. 2012;7:99–122. doi: 10.1146/annurev-pathol-011811-132421.
    1. Fraher MH, O’Toole PW, Quigley EM. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol. 2012;9:312–22. doi: 10.1038/nrgastro.2012.44.
    1. Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 2013;152:39–50. doi: 10.1016/j.cell.2012.10.052.
    1. Lyte M, Freestone PPE. Microbial endocrinology: interkingdom signaling in infectious disease and health. New York: Springer, 2010.
    1. Lyte M. Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol. 2004;12:14–20. doi: 10.1016/j.tim.2003.11.004.
    1. Obata K. Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system. Proc Jpn Acad Ser B Phys Biol Sci. 2013;89:139–56. doi: 10.2183/pjab.89.139.
    1. Bjurstöm H, Wang J, Ericsson I, Bengtsson M, Liu Y, Kumar-Mendu S, Issazadeh-Navikas S, Birnir B. GABA, a natural immunomodulator of T lymphocytes. J Neuroimmunol. 2008;205:44–50. doi: 10.1016/j.jneuroim.2008.08.017.
    1. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113:411–7. doi: 10.1111/j.1365-2672.2012.05344.x.
    1. Roshchina VV. Evolutionary considerations of neurotransmitters in microbial, plant and animal cells. In: Lyte M, Freestone PP, eds. Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. New York: Springer, 2010:17-52.
    1. Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV. Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Dokl Biochem. 2000;372:115–7.
    1. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1288–95. doi: 10.1152/ajpgi.00341.2012.
    1. Stephenson M, Rowatt E. The production of acetylcholine by a strain of Lactobacillus plantarum. J Gen Microbiol. 1947;1:279–98. doi: 10.1099/00221287-1-3-279.
    1. Devalia JL, Grady D, Harmanyeri Y, Tabaqchali S, Davies RJ. Histamine synthesis by respiratory tract micro-organisms: possible role in pathogenicity. J Clin Pathol. 1989;42:516–22. doi: 10.1136/jcp.42.5.516.
    1. Shahkolahi AM, Donahue MJ. Bacterial flora, a possible source of serotonin in the intestine of adult female Ascaris suum. J Parasitol. 1993;79:17–22. doi: 10.2307/3283271.
    1. Uzbay TI. The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev. 2012;36:502–19. doi: 10.1016/j.neubiorev.2011.08.006.
    1. Arena ME, Manca de Nadra MC. Biogenic amine production by Lactobacillus. J Appl Microbiol. 2001;90:158–62. doi: 10.1046/j.1365-2672.2001.01223.x.
    1. Gale EF. The production of amines by bacteria: The decarboxylation of amino-acids by strains of Bacterium coli. Biochem J. 1940;34:392–413.
    1. Iyer LM, Aravind L, Coon SL, Klein DC, Koonin EV. Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet. 2004;20:292–9. doi: 10.1016/j.tig.2004.05.007.
    1. Riley DR, Sieber KB, Robinson KM, White JR, Ganesan A, Nourbakhsh S, Dunning Hotopp JC. Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput Biol. 2013;9:e1003107. doi: 10.1371/journal.pcbi.1003107.
    1. Lyte M. The microbial organ in the gut as a driver of homeostasis and disease. Med Hypotheses. 2010;74:634–8. doi: 10.1016/j.mehy.2009.10.025.
    1. Lenard J. Mammalian hormones in microbial cells. Trends Biochem Sci. 1992;17:147–50. doi: 10.1016/0968-0004(92)90323-2.
    1. Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E, Koga Y, Benno Y. Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep. 2012;2:233. doi: 10.1038/srep00233.
    1. Martin FP, Dumas ME, Wang Y, Legido-Quigley C, Yap IK, Tang H, Zirah S, Murphy GM, Cloarec O, Lindon JC, et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol. 2007;3:112. doi: 10.1038/msb4100153.
    1. Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. Bioessays. 2011;33:574–81. doi: 10.1002/bies.201100024.
    1. Breer H, Eberle J, Frick C, Haid D, Widmayer P. Gastrointestinal chemosensation: chemosensory cells in the alimentary tract. Histochem Cell Biol. 2012;138:13–24. doi: 10.1007/s00418-012-0954-z.
    1. Schafer DF, Fowler JM, Jones EA. Colonic bacteria: a source of gamma-aminobutyric acid in blood. Proc Soc Exp Biol Med. 1981;167:301–3. doi: 10.3181/00379727-167-41169.
    1. Minuk GY. Gamma-aminobutyric acid (GABA) production by eight common bacterial pathogens. Scand J Infect Dis. 1986;18:465–7. doi: 10.3109/00365548609032366.
    1. Balcar VJ. Presence of a highly efficient “binding” to bacterial contamination can distort data from binding studies. Neurochem Res. 1990;15:1237–8. doi: 10.1007/BF01208585.
    1. Guthrie GD, Nicholson-Guthrie CS. gamma-Aminobutyric acid uptake by a bacterial system with neurotransmitter binding characteristics. Proc Natl Acad Sci U S A. 1989;86:7378–81. doi: 10.1073/pnas.86.19.7378.
    1. LeRoith D, Roberts C, Jr., Lesniak MA, Roth J. Receptors for intercellular messenger molecules in microbes: similarities to vertebrate receptors and possible implications for diseases in man. Experientia. 1986;42:782–8. doi: 10.1007/BF01941525.
    1. Roth J, LeRoith D, Shiloach J, Rosenzweig JL, Lesniak MA, Havrankova J. The evolutionary origins of hormones, neurotransmitters, and other extracellular chemical messengers: implications for mammalian biology. N Engl J Med. 1982;306:523–7. doi: 10.1056/NEJM198203043060907.
    1. Lyte M. The role of catecholamines in gram-negative sepsis. Med Hypotheses. 1992;37:255–8. doi: 10.1016/0306-9877(92)90197-K.
    1. Lyte M, Ernst S. Catecholamine induced growth of gram negative bacteria. Life Sci. 1992;50:203–12. doi: 10.1016/0024-3205(92)90273-R.
    1. Lyte M. Microbial Endocrinology: A Personal Journey In: Lyte M, Freestone PPE, eds. Microbial endocrinology: interkingdom signaling in infectious disease and health. New York: Springer, 2010:1-16.
    1. Pullinger GD, Carnell SC, Sharaff FF, van Diemen PM, Dziva F, Morgan E, Lyte M, Freestone PP, Stevens MP. Norepinephrine augments Salmonella enterica-induced enteritis in a manner associated with increased net replication but independent of the putative adrenergic sensor kinases QseC and QseE. Infect Immun. 2010;78:372–80. doi: 10.1128/IAI.01203-09.
    1. Bearson BL, Bearson SM, Uthe JJ, Dowd SE, Houghton JO, Lee I, Toscano MJ, Lay DC., Jr. Iron regulated genes of Salmonella enterica serovar Typhimurium in response to norepinephrine and the requirement of fepDGC for norepinephrine-enhanced growth. Microbes Infect. 2008;10:807–16. doi: 10.1016/j.micinf.2008.04.011.
    1. Hegde M, Wood TK, Jayaraman A. The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway. Appl Microbiol Biotechnol. 2009;84:763–76. doi: 10.1007/s00253-009-2045-1.
    1. Oneal MJ, Schafer ER, Madsen ML, Minion FC. Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to norepinephrine. Microbiology. 2008;154:2581–8. doi: 10.1099/mic.0.2008/020230-0.
    1. Peterson G, Kumar A, Gart E, Narayanan S. Catecholamines increase conjugative gene transfer between enteric bacteria. Microb Pathog. 2011;51:1–8. doi: 10.1016/j.micpath.2011.03.002.
    1. Lyte M, Gaykema R, Goehler L. Behavior modification of host by microbes. In: Schaechter M, ed. Encyclopedia of Microbiology. Oxford: Elsevier, 2009:121-7.
    1. Udenfriend S, Lovenberg W, Sjoerdsma A. Physiologically active amines in common fruits and vegetables. Arch Biochem Biophys. 1959;85:487–90. doi: 10.1016/0003-9861(59)90516-8.
    1. Von Roepenack-Lahaye E, Newman MA, Schornack S, Hammond-Kosack KE, Lahaye T, Jones JD, Daniels MJ, Dow JM. p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. J Biol Chem. 2003;278:43373–83. doi: 10.1074/jbc.M305084200.
    1. Pitman RM. Transmitter substances in insects: a review. Comp Gen Pharmacol. 1971;2:347–71. doi: 10.1016/0010-4035(71)90060-7.
    1. Guerrero HY, Caceres G, Paiva CL, Marcano D. Hypothalamic and telencephalic catecholamine content in the brain of the teleost fish, Pygocentrus notatus, during the annual reproductive cycle. Gen Comp Endocrinol. 1990;80:257–63. doi: 10.1016/0016-6480(90)90170-Q.
    1. Moreira CG, Weinshenker D, Sperandio V. QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo. Infect Immun. 2010;78:914–26. doi: 10.1128/IAI.01038-09.
    1. Methner U, Rabsch W, Reissbrodt R, Williams PH. Effect of norepinephrine on colonisation and systemic spread of Salmonella enterica in infected animals: role of catecholate siderophore precursors and degradation products. Int J Med Microbiol. 2008;298:429–39. doi: 10.1016/j.ijmm.2007.07.013.
    1. Reissbrodt R, Rienaecker I, Romanova JM, Freestone PP, Haigh RD, Lyte M, Tschäpe H, Williams PH. Resuscitation of Salmonella enterica serovar typhimurium and enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat-stable enterobacterial autoinducer. Appl Environ Microbiol. 2002;68:4788–94. doi: 10.1128/AEM.68.10.4788-4794.2002.
    1. Anderson MT, Armstrong SK. Norepinephrine mediates acquisition of transferrin-iron in Bordetella bronchiseptica. J Bacteriol. 2008;190:3940–7. doi: 10.1128/JB.00086-08.
    1. Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R, Williams PH. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet. 2003;361:130–5. doi: 10.1016/S0140-6736(03)12231-3.
    1. Le Roith D, Shiloach J, Berelowitz M, Frohman LA, Liotta AS, Krieger DT, Roth J. Are messenger molecules in microbes the ancestors of the vertebrate hormones and tissue factors? Fed Proc. 1983;42:2602–7.
    1. LeRoith D. Vertebrate hormones and neuropeptides in microbes: evolutionary origin of intercellular communication. In: Martini L, Ganong WF, eds. Front Neuroendocrinol. New York: Raven Press, 1984:1-25.
    1. Lyte M, Bailey MT. Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma. J Surg Res. 1997;70:195–201. doi: 10.1006/jsre.1997.5130.
    1. Lyte M, Bailey MT. Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma. J Surg Res. 1997;70:195–201. doi: 10.1006/jsre.1997.5130.
    1. Freestone PP, Haigh RD, Williams PH, Lyte M. Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol Lett. 1999;172:53–60. doi: 10.1111/j.1574-6968.1999.tb13449.x.
    1. Vlisidou I, Lyte M, van Diemen PM, Hawes P, Monaghan P, Wallis TS, Stevens MP. The neuroendocrine stress hormone norepinephrine augments Escherichia coli O157:H7-induced enteritis and adherence in a bovine ligated ileal loop model of infection. Infect Immun. 2004;72:5446–51. doi: 10.1128/IAI.72.9.5446-5451.2004.
    1. Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, Lyte M. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun. 2010;78:1509–19. doi: 10.1128/IAI.00862-09.
    1. Ko CY, Lin HTV, Tsai GJ. Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochem. 2013;48:559–68. doi: 10.1016/j.procbio.2013.02.021.
    1. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108:16050–5. doi: 10.1073/pnas.1102999108.
    1. Irwin MR, Rothermundt M. Clinical psychoneuroimmunology. Handb Clin Neurol. 2012;106:211–25. doi: 10.1016/B978-0-444-52002-9.00012-7.
    1. Smith TA. The occurrence, metabolism and functions of amines in plants. Biol Rev Camb Philos Soc. 1971;46:201–41. doi: 10.1111/j.1469-185X.1971.tb01182.x.
    1. Kuklin AI, Conger BV. CATECHOLAMINES IN PLANTS. J Plant Growth Regul. 1995;14:91–7. doi: 10.1007/BF00203119.
    1. Vijayakumari K, Siddhuraju P, Janardhanan K. Effect of different post-harvest treatments on antinutritional factors in seeds of the tribal pulse, Mucuna pruriens (L.) DC. Int J Food Sci Nutr. 1996;47:263–72. doi: 10.3109/09637489609012587.
    1. Li W, Dowd SE, Scurlock B, Acosta-Martinez V, Lyte M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol Behav. 2009;96:557–67. doi: 10.1016/j.physbeh.2008.12.004.
    1. Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9:286–94. doi: 10.1038/nrgastro.2012.32.
    1. Wood JD. Enteric neuroimmunophysiology and pathophysiology. Gastroenterology. 2004;127:635–57. doi: 10.1053/j.gastro.2004.02.017.
    1. McFarland LV. Antibiotic-associated diarrhea: epidemiology, trends and treatment. Future Microbiol. 2008;3:563–78. doi: 10.2217/17460913.3.5.563.
    1. Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. 2009;7:526–36. doi: 10.1038/nrmicro2164.
    1. Norris V, Molina F, Gewirtz AT. Hypothesis: bacteria control host appetites. J Bacteriol. 2013;195:411–6. doi: 10.1128/JB.01384-12.

Source: PubMed

3
Abonnieren