A Randomized Pilot Study of the Effect of Trelagliptin and Alogliptin on Glycemic Variability in Patients with Type 2 Diabetes

Rimei Nishimura, Takeshi Osonoi, Yasuhiro Koike, Kouji Miyata, Yukio Shimasaki, Rimei Nishimura, Takeshi Osonoi, Yasuhiro Koike, Kouji Miyata, Yukio Shimasaki

Abstract

Introduction: This open-label, parallel-group, exploratory study examined the effects of two dipeptidyl peptidase 4 (DPP4) inhibitors on glycemic variability (GV) in patients with type 2 diabetes.

Methods: Randomized patients with glycated hemoglobin A1c of at least 6.5% to less than 8.5% received trelagliptin 100 mg (n = 13) once weekly or alogliptin 25 mg (n = 14) once daily for 29 days. Continuous glucose monitoring was performed before the start of the treatment period (baseline) and from day 21 to 29, inclusive. The primary endpoint was change from baseline in the standard deviation (SD) of 24-h blood glucose values, measured daily for 7 days (day 22-28) of the treatment period. Secondary and additional efficacy endpoints included changes in glycemic parameters and the rate of DPP4 inhibition, respectively. Adverse events (AEs) were monitored to assess safety.

Results: Mean change from baseline in the SD of 24-h blood glucose (95% confidence interval) at day 28 was - 7.35 (- 15.13, 0.44) for trelagliptin and - 11.63 (- 18.67, - 4.59) for alogliptin. In both treatment groups, glycemic parameters improved and the rate of DPP4 inhibition was maintained. Three patients reported AEs; no severe treatment-emergent AEs were reported in either group.

Conclusion: Once-weekly trelagliptin and once-daily alogliptin improved glycemic control and reduced GV without inducing hypoglycemia.

Trial registration: ClinicalTrials.gov (NCT02771093) and JAPIC (JapicCTI-163250).

Funding: Takeda Pharmaceutical Company, Ltd.

Keywords: Alogliptin; Continuous glucose monitoring; Dipeptidyl peptidase 4 inhibitors; Efficacy; Glycemic variability; Hypoglycemia; Safety; Trelagliptin; Type 2 diabetes.

Figures

Fig. 1
Fig. 1
Study design. CGM continuous glucose monitoring
Fig. 2
Fig. 2
Schematic representation of patient disposition
Fig. 3
Fig. 3
Change from baseline of SD of 24-h blood glucose. SD standard deviation
Fig. 4
Fig. 4
Inhibition rate of plasma DPP4. DPP4 dipeptidyl peptidase 4, SD standard deviation
Fig. 5
Fig. 5
Frequency distributions of glucose values obtained from CGM. CGM continuous glucose monitoring

References

    1. Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281. doi: 10.1016/j.diabres.2018.02.023.
    1. International Diabetes Federation . IDF Diabetes Atlas. 8. Brussels: International Diabetes Federation; 2017.
    1. Suh S, Kim JH. Glycemic variability: how do we measure it and why is it important? Diabetes Metab J. 2015;39(4):273–282. doi: 10.4093/dmj.2015.39.4.273.
    1. Nathan DM, Turgeon H, Regan S. Relationship between glycated haemoglobin levels and mean glucose levels over time. Diabetologia. 2007;50(11):2239–2244. doi: 10.1007/s00125-007-0803-0.
    1. Saudek CD, Brick JC. The clinical use of hemoglobin A1c. J Diabetes Sci Technol. 2009;3(4):629–634. doi: 10.1177/193229680900300402.
    1. Bonds DE, Miller ME, Bergenstal RM, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ. 2010;340:b4909. doi: 10.1136/bmj.b4909.
    1. Hsu PF, Sung SH, Cheng HM, et al. Association of clinical symptomatic hypoglycemia with cardiovascular events and total mortality in type 2 diabetes: a nationwide population-based study. Diabetes Care. 2013;36(4):894–900. doi: 10.2337/dc12-0916.
    1. Sartore G, Chilelli NC, Burlina S, Lapolla A. Association between glucose variability as assessed by continuous glucose monitoring (CGM) and diabetic retinopathy in type 1 and type 2 diabetes. Acta Diabetol. 2013;50(3):437–442. doi: 10.1007/s00592-013-0459-9.
    1. Su G, Mi S, Tao H, et al. Association of glycemic variability and the presence and severity of coronary artery disease in patients with type 2 diabetes. Cardiovasc Diabetol. 2011;10:19. doi: 10.1186/1475-2840-10-19.
    1. Smith-Palmer J, Brandle M, Trevisan R, Orsini Federici M, Liabat S, Valentine W. Assessment of the association between glycemic variability and diabetes-related complications in type 1 and type 2 diabetes. Diabetes Res Clin Pract. 2014;105(3):273–284. doi: 10.1016/j.diabres.2014.06.007.
    1. Zhang Y, Hu G, Yuan Z, Chen L. Glycosylated hemoglobin in relationship to cardiovascular outcomes and death in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS One. 2012;7(8):e42551. doi: 10.1371/journal.pone.0042551.
    1. Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–1687. doi: 10.1001/jama.295.14.1681.
    1. Ceriello A, Esposito K, Piconi L, et al. Glucose “peak” and glucose “spike”: impact on endothelial function and oxidative stress. Diabetes Res Clin Pract. 2008;82(2):262–267. doi: 10.1016/j.diabres.2008.07.015.
    1. Vella A. Mechanism of action of DPP-4 inhibitors–new insights. J Clin Endocrinol Metab. 2012;97(8):2626–2628. doi: 10.1210/jc.2012-2396.
    1. Gerich J. Pathogenesis and management of postprandial hyperglycemia: role of incretin-based therapies. Int J Gen Med. 2013;6:877–895. doi: 10.2147/IJGM.S51665.
    1. Patel BD, Ghate MD. Recent approaches to medicinal chemistry and therapeutic potential of dipeptidyl peptidase-4 (DPP-4) inhibitors. Eur J Med Chem. 2014;74:574–605. doi: 10.1016/j.ejmech.2013.12.038.
    1. Takeda Pharmaceutical Company Ltd. Zafatek® (trelagliptin succinate) tablet prescribing information (Japanese). 2016. . Accessed May 2, 2017.
    1. Inagaki N, Onouchi H, Maezawa H, Kuroda S, Kaku K. Once-weekly trelagliptin versus daily alogliptin in Japanese patients with type 2 diabetes: a randomised, double-blind, phase 3, non-inferiority study. Lancet Diabetes Endocrinol. 2015;3(3):191–197. doi: 10.1016/S2213-8587(14)70251-7.
    1. Pharmaceutical and Food Safety Bureau Ministry of Health Labour and Welfare. On release of the Guideline for Clinical Evaluation of Oral Hypoglycemic Agents. 2010. . Accessed May 2, 2017.
    1. Action to Control Cardiovascular Risk in Diabetes Study Group. Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–2559. doi: 10.1056/NEJMoa0802743.
    1. Currie CJ, Peters JR, Tynan A, et al. Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010;375(9713):481–489. doi: 10.1016/S0140-6736(09)61969-3.
    1. Dandona P. Minimizing glycemic fluctuations in patients with type 2 diabetes: approaches and importance. Diabetes Technol Ther. 2017;19(9):498–506. doi: 10.1089/dia.2016.0372.
    1. Nomoto H, Miyoshi H, Sugawara H, et al. A randomized controlled trial comparing the effects of dapagliflozin and DPP-4 inhibitors on glucose variability and metabolic parameters in patients with type 2 diabetes mellitus on insulin. Diabetol Metab Syndr. 2017;9:54. doi: 10.1186/s13098-017-0255-8.
    1. Park SE, Lee BW, Kim JH, et al. Effect of gemigliptin on glycaemic variability in patients with type 2 diabetes (STABLE study) Diabetes Obes Metab. 2017;19(6):892–896. doi: 10.1111/dom.12869.
    1. Takebayashi K, Suzuki T, Naruse R, et al. Long-term effect of alogliptin on glycemic control in Japanese patients with type 2 diabetes: a 3.5-year observational study. J Clin Med Res. 2017;9(9):802–808. doi: 10.14740/jocmr3118w.
    1. Inagaki N, Sano H, Seki Y, Kuroda S, Kaku K. Long-term safety and efficacy of a novel once-weekly oral trelagliptin as monotherapy or in combination with an existing oral antidiabetic drug in patients with type 2 diabetes mellitus: a 52-week open-label, phase 3 study. J Diabetes Investig. 2016;7(5):718–726. doi: 10.1111/jdi.12499.
    1. Yabe D, Eto T, Shiramoto M, et al. Effects of DPP-4 inhibitor linagliptin and GLP-1 receptor agonist liraglutide on physiological response to hypoglycaemia in Japanese subjects with type 2 diabetes: a randomized, open-label, 2-arm parallel comparative, exploratory trial. Diabetes Obes Metab. 2017;19(3):442–447. doi: 10.1111/dom.12817.
    1. Inagaki N, Onouchi H, Sano H, Funao N, Kuroda S, Kaku K. SYR-472, a novel once-weekly dipeptidyl peptidase-4 (DPP-4) inhibitor, in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2(2):125–132. doi: 10.1016/S2213-8587(13)70149-9.
    1. Inagaki N, Sano H, Seki Y, Kuroda S, Kaku K. Efficacy and safety of once-weekly oral trelagliptin switched from once-daily dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes mellitus: an open-label, phase 3 exploratory study. J Diabetes Investig. 2018;9(2):354–359. doi: 10.1111/jdi.12730.
    1. Ma D, Yu Y, Yu X, Zhang M, Yang Y. The changes of leukocyte telomere length and telomerase activity after sitagliptin intervention in newly diagnosed type 2 diabetes. Diabetes Metab Res Rev. 2015;31(3):256–261. doi: 10.1002/dmrr.2578.
    1. Dalle S, Burcelin R, Gourdy P. Specific actions of GLP-1 receptor agonists and DPP4 inhibitors for the treatment of pancreatic beta-cell impairments in type 2 diabetes. Cell Signal. 2013;25(2):570–579. doi: 10.1016/j.cellsig.2012.11.009.
    1. Urata H, Eimoto M. Points to note when using CGM. Patient explanation [Japanese] Calm. 2015;2(1):8–11.

Source: PubMed

3
Abonnieren