An Overview of Acoustic-Based Interventions to Improve Motor Symptoms in Parkinson's Disease

Jessie Siew Pin Leuk, Linette Li Neng Low, Wei-Peng Teo, Jessie Siew Pin Leuk, Linette Li Neng Low, Wei-Peng Teo

Abstract

Parkinson's disease (PD) is characterized by motor and cognitive deficits that negatively impact on activities of daily living. While dopaminergic medications are used to attenuate motor symptoms, adjuvant therapies such as acoustic-based non-pharmacological interventions are used as a complement to standard drug treatments. At present, preliminary studies of acoustic-based interventions such as rhythmic-auditory stimulation (RAS) and vibroacoustic therapy (VAT) suggest two competing hypotheses: (1) RAS may recruit alternative motor networks that may bypass faulty spatiotemporal motor networks of movement in PD; or (2) the use of RAS enhances BG function through entrainment of beta oscillatory activities. In this mini review article, we discuss the mechanisms underlying the role of acoustic-based interventions and how it may serve to improve motor deficits such as gait impairments and tremors. We further provide suggestions for future work that may use a combination of RAS, VAT, and physical therapy to improve motor function in PD.

Keywords: Parkinson’s disease; acoustic therapy; motor symptom (MDS-UPDRS-III); music therapy (MT); rhythm entrainment.

Copyright © 2020 Leuk, Low and Teo.

Figures

Figure 1
Figure 1
(A) An illustration of the striato-thalamocortical motor loop that is impaired in Parkinson’s disease (PD) due to dopamine depletion within the SNC of the basal ganglia (cross and dotted lines). (B) An illustration of The Compensation Hypothesis, which suggests recruitment of the cerebello-thalamocortical pathway that bypasses the BG (red lines). Alternatively, The Restoration Hypothesis suggests a facilitation effect on the striato-thalamocortical pathway, specifically facilitating dopaminergic function in the basal ganglia, (blue lines). M1, primary motor cortex; SMA, supplementary motor cortex; PMC, premotor cortex; PC, parietal cortex; SNC, substantia nigra pars compacta; GPe, external globus pallidus; GPi, internal globus pallidus; STN, subthalamic nucleus (adapted from Fujii and Wan, 2014).

References

    1. Altenmüller E., Marco-Pallares J., Münte T. F., Schneider S. (2009). Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Ann. N Y Acad. Sci. 1169, 395–405. 10.1111/j.1749-6632.2009.04580.x
    1. Ashoori A., Eagleman D. M., Jankovic J. (2015). Effects of auditory rhythm and music on gait disturbances in Parkinson’s disease. Front. Neurol. 6:234. 10.3389/fneur.2015.00234
    1. Benoit C. E., Dalla Bella S., Farrugia N., Obrig H., Mainka S., Kotz S. A. (2014). Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease. Front. Hum. Neurosci. 8:494. 10.3389/fnhum.2014.00494
    1. Bhidayasiri R. (2005). Differential diagnosis of common tremor syndromes. Postgrad. Med. J. 81, 756–762. 10.1136/pgmj.2005.032979
    1. Buard I., Dewispelaere W. B., Thaut M., Kluger B. M. (2019). Preliminary neurophysiological evidence of altered cortical activity and connectivity with neurologic music therapy in Parkinson’s disease. Front. Neurosci. 13:105. 10.3389/fnins.2019.00105
    1. Buhmann C., Jungnickel D., Lehmann E. (2018). Stress management training (SMT) improves coping of tremor-boosting psychosocial stressors and depression in patients with Parkinson’s disease: a controlled prospective study. Parkinsons Dis. 2018:4240178. 10.1155/2018/4240178
    1. Calabro R. S., Naro A., Filoni S., Pullia M., Billeri L., Tomasello P., et al. (2019). Walking to your right music: a randomized controlled trial on the novel use of treadmill plus music in Parkinson’s disease. J. Neuroeng. Rehabil. 16:68 10.1186/s12984-019-0533-9
    1. Chanda M. L., Levitin D. J. (2013). The neurochemistry of music. Trends Cogn. Sci. 17, 179–193. 10.1016/j.tics.2013.02.007
    1. Chaudhuri K. R., Healy D. G., Schapira A. H. (2006). Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 5, 235–245. 10.1016/S1474-4422(06)70373-8
    1. Chesky K. S., Michel D. E. (1991). The music vibration table (MVT™): developing a technology and conceptual model for pain relief. Music Ther. Perspect. 9, 32–38. 10.1093/mtp/9.1.32
    1. Cochen De Cock V., Dotov D. G., Ihalainen P., Bégel V., Galtier F., Lebrun C., et al. . (2018). Rhythmic abilities and musical training in Parkinson’s disease: do they help? NPJ Parkinsons Dis. 4:8. 10.1038/s41531-018-0043-7
    1. Dalla Bella S., Benoit C.-E., Farrugia N., Keller P. E., Obrig H., Mainka S., et al. . (2017). Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills. Sci. Rep. 7:42005. 10.1038/srep42005
    1. Elliott R., Newman J. L., Longe O. A., William Deakin J. F. (2004). Instrumental responding for rewards is associated with enhanced neuronal response in subcortical reward systems. NeuroImage 21, 984–990. 10.1016/j.neuroimage.2003.10.010
    1. Fernandez del Olmo M., Arias P., Furio M., Pozo M., Cudeiro J. (2006). Evaluation of the effect of training using auditory stimulation on rhythmic movement in Parkinsonian patients—a combined motor and [18F]-FDG PET study. Parkinsonism Relat. Disord. 12, 155–164. 10.1016/j.parkreldis.2005.11.002
    1. Fujii S., Wan C. Y. (2014). The role of rhythm in speech and language rehabilitation: the SEP hypothesis. Front. Hum. Neurosci. 8:777 10.3389/fnhum.2014.00777
    1. Ghai S., Ghai I., Schmitz G., Effenberg A. O. (2018). Effect of rhythmic auditory cueing on parkinsonian gait: a systematic review and meta-analysis. Sci. Rep. 8:506. 10.1038/s41598-017-16232-5
    1. Gordon C. L., Cobb P. R., Balasubramaniam R. (2018). Recruitment of the motor system during music listening: an ALE meta-analysis of fMRI data. PLoS One 13:e0207213. 10.1371/journal.pone.0207213
    1. Grahn J. A. (2009). The role of the basal ganglia in beat perception: neuroimaging and neuropsychological investigations. Ann. N Y Acad. Sci. 1169, 35–45. 10.1111/j.1749-6632.2009.04553.x
    1. Grahn J. A., Rowe J. B. (2013). Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cereb. Cortex 23, 913–921. 10.1093/cercor/bhs083
    1. Haas C. T., Turbanski S., Kessler K., Schmidtbleicher D. (2006). The effects of random whole-body-vibration on motor symptoms in Parkinson’s disease. NeuroRehabilitation 21, 29–36. 10.3233/nre-2006-21105
    1. Harrison E. C., Horin A. P., Earhart G. M. (2018). Internal cueing improves gait more than external cueing in healthy adults and people with Parkinson disease. Scienti. Rep. 8, 1–9.
    1. Hunt A. M. (2015). Boundaries and potentials of traditional and alternative neuroscience research methods in music therapy research. Front. Hum. Neurosci. 9:342. 10.3389/fnhum.2015.00342
    1. Jankovic J. (2008). Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376. 10.1136/jnnp.2007.131045
    1. Janzen T. B., Paneduro D., Picard L., Gordon A., Bartel L. R. (2019). A parallel randomized controlled trial examining the effects of rhythmic sensory stimulation on fibromyalgia symptoms. PLoS One 14:e0212021. 10.1371/journal.pone.0212021
    1. Jöbges E., Elek J., Rollnik J., Dengler R., Wolf W. (2002). Vibratory proprioceptive stimulation affects Parkinsonian tremor. Parkinsonism Relat. Disord. 8, 171–176. 10.1016/s1353-8020(01)00016-5
    1. Jones C. R., Malone T. J., Dirnberger G., Edwards M., Jahanshahi M. (2008). Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cogn. 68, 30–41. 10.1016/j.bandc.2008.02.121
    1. Kadivar Z., Corcos D. M., Foto J., Hondzinski J. M. (2011). Effect of step training and rhythmic auditory stimulation on functional performance in Parkinson patients. Neuro. Neu. Repair 25, 626–635. 10.1177/1545968311401627
    1. King L. K., Almeida Q. J., Ahonen H. (2009). Short-term effects of vibration therapy on motor impairments in Parkinson’s disease. NeuroRehabilitation 25, 297–306. 10.3233/NRE-2009-0528
    1. Koshimori Y., Strafella A. P., Valli M., Sharma V., Cho S.-S., Houle S., et al. . (2019). Motor synchronization to rhythmic auditory stimulation (RAS) attenuates dopaminergic responses in ventral striatum in young healthy adults:[11C]-(+)-PHNO PET study. Front. Neurosci. 13:106. 10.3389/fnins.2019.00106
    1. Leow L. A., Parrott T., Grahn J. A. (2014). Individual differences in beat perception affect gait responses to low- and high-groove music. Front. Hum. Neurosci. 8:811. 10.3389/fnhum.2014.00811
    1. Liljeholm M., O’Doherty J. P. (2012). Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn. Sci. 16, 467–475. 10.1016/j.tics.2012.07.007
    1. Little S., Brown P. (2012). What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Ann. N Y Acad. Sci. 1265, 9–24. 10.1111/j.1749-6632.2012.06650.x
    1. Magee W. L., Davidson J. W. (2002). The effect of music therapy on mood states in neurological patients: a pilot study. J. Music Ther. 39, 20–29. 10.1093/jmt/39.1.20
    1. McIntosh G. C., Brown S. H., Rice R. R., Thaut M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 62, 22–26. 10.1136/jnnp.62.1.22
    1. Molnar-Szakacs I., Overy K. (2006). Music and mirror neurons: from motion to ‘e’motion. Soc. Cogn. Affect. Neurosci. 1, 235–241. 10.1093/scan/nsl029
    1. Morris I. B., Vasudevan E., Schedel M., Weymouth D., Loomis J., Pinkhasov T., et al. . (2019). Music to one’s ears: familiarity and music engagement in people with Parkinson’s disease. Front. Neurosci. 13:661. 10.3389/fnins.2019.00661
    1. Murgia M., Pili R., Corona F., Sors F., Agostini T. A., Bernardis P., et al. (2018). The Use of Footstep Sounds as Rhythmic Auditory Stimulation for Gait Rehabilitation in Parkinson’s Disease: A Randomized Controlled Trial. Front. Neurol. 9:348 10.3389/fneur.2018.00348
    1. Nilsson U. (2008). The anxiety- and pain-reducing effects of music interventions: a systematic review. AORN J. 87, 780–807. 10.1016/j.aorn.2007.09.013
    1. Nombela C., Hughes L. E., Owen A. M., Grahn J. A. (2013). Into the groove: can rhythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. 37, 2564–2570. 10.1016/j.neubiorev.2013.08.003
    1. Poliaková N., Králová E. (2015). 22. Potency of music and movement stimulation in the health care of patients with Parkinson’s disease. Rev. Art. Educ. 9, 164–175.
    1. Punkanen M., Ala-Ruona E. (2012). Contemporary vibroacoustic therapy: perspectives on clinical practice, research, and training. Music Med. 4, 128–135. 10.1177/1943862112445324
    1. Raglio A. (2015). Music therapy interventions in Parkinson’s disease: the state-of-the-art. Front. Neurol. 6:185. 10.3389/fneur.2015.00185
    1. Reeve A., Simcox E., Turnbull D. (2014). Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res. Rev. 14, 19–30. 10.1016/j.arr.2014.01.004
    1. Rizek P., Kumar N., Jog M. S. (2016). An update on the diagnosis and treatment of Parkinson disease. CMAJ 188, 1157–1165. 10.1503/cmaj.151179
    1. Rochester L., Burn D. J., Woods G., Godwin J., Nieuwboer A. (2009). Does auditory rhythmical cueing improve gait in people with Parkinson’s disease and cognitive impairment? A feasibility study. Mov. Disord. 24, 839–845. 10.1002/mds.22400
    1. Rohenkohl G., Cravo A. M., Wyart V., Nobre A. C. (2012). Temporal expectation improves the quality of sensory information. J. Neurosci. 32, 8424–8428. 10.1523/JNEUROSCI.0804-12.2012
    1. Rose D., Delevoye-Turrell Y., Ott L., Annett L. E., Lovatt P. J. (2019). Music and metronomes differentially impact motor timing in people with and without Parkinson’s disease: effects of slow, medium, and fast tempi on entrainment and synchronization performances in finger tapping, toe tapping, and stepping on the spot tasks. Parkinsons Dis. 2019:6530838. 10.1155/2019/6530838
    1. Salimpoor V. N., Benovoy M., Larcher K., Dagher A., Zatorre R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14, 257–262. 10.1038/nn.2726
    1. Schlesinger I., Benyakov O., Erikh I., Suraiya S., Schiller Y. (2009). Parkinson’s disease tremor is diminished with relaxation guided imagery. Mov. Disord. 24, 2059–2062. 10.1002/mds.22671
    1. Schwartze M., Keller P. E., Patel A. D., Kotz S. A. (2011). The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo and the detection of tempo changes. Behav. Brain Res. 216, 685–691. 10.1016/j.bbr.2010.09.015
    1. Sen S., Kawaguchi A., Truong Y., Lewis M. M., Huang X. (2010). Dynamic changes in cerebello-thalamo-cortical motor circuitry during progression of Parkinson’s disease. Neuroscience 166, 712–719. 10.1016/j.neuroscience.2009.12.036
    1. Sharott A., Gulberti A., Zittel S., Tudor Jones A. A., Fickel U., Munchau A., et al. . (2014). Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson’s disease. J. Neurosci. 34, 6273–6285. 10.1523/JNEUROSCI.1803-13.2014
    1. Sihvonen A. J., Särkämö T., Leo V., Tervaniemi M., Altenmüller E., Soinila S. (2017). Music-based interventions in neurological rehabilitation. Lancet Neurol. 16, 648–660. 10.1016/S1474-4422(17)30168-0
    1. Skille O., Wigram T. (1995). “The effect of music, vocalisation and vibration on brain and muscle tissue: studies in vibroacoustic therapy,” in The Art and Science of Music Therapy: A Handbook, eds Wigram T., Saperston B., West R. (London: Harwood Academic; ), 23–57.
    1. Sveinbjornsdottir S. (2016). The clinical symptoms of Parkinson’s disease. J. Neurochem. 139, 318–324. 10.1111/jnc.13691
    1. Teo W. P., Hendy A. M., Goodwill A. M., Loftus A. M. (2017). Transcranial alternating current stimulation: a potential modulator for pathological oscillations in Parkinson’s disease? Front. Neurol. 8:185. 10.3389/fneur.2017.00185
    1. Thaut T. H. (2005). The future of music in therapy and medicine. Ann. N Y Acad. Sci. 1060, 303–308. 10.1196/annals.1360.023
    1. Thaut M. H., McIntosh G. C., Rice R. R., Miller R. A., Rathbun J., Brault J. M. (1996). Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov. Disord. 11, 193–200. 10.1002/mds.870110213
    1. Thaut M. H., Stephan K. M., Wunderlich G., Schicks W., Tellmann L., Herzog H., et al. . (2009). Distinct cortico-cerebellar activations in rhythmic auditory motor synchronization. Cortex 45, 44–53. 10.1016/j.cortex.2007.09.009
    1. Todd N. P., Lee C. S. (2015). The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis and future perspectives. Front. Hum. Neurosci. 9:444. 10.3389/fnhum.2015.00444
    1. Vorovenci R. J., Biundo R., Antonini A. (2016). Therapy-resistant symptoms in Parkinson’s disease. J. Neural Transm. 123, 19–30. 10.1007/s00702-015-1463-8
    1. Warth M., Kessler J., Kotz S., Hillecke T. K., Bardenheuer H. J. (2015). Effects of vibroacoustic stimulation in music therapy for palliative care patients: a feasibility study. BMC Complement. Altern. Med. 15:436. 10.1186/s12906-015-0933-8
    1. Wigram A. L. (1996). The Effects of Vibroacoustic Therapy on Clinical and Non-Clinical Populations. London: University of London.
    1. Woerd E. S., Oostenveld R., de Lange F. P., Praamstra P. (2014). A shift from prospective to reactive modulation of β-band oscillations in Parkinson’s disease. NeuroImage 100, 507–519. 10.1016/j.neuroimage.2014.06.039
    1. Zach H., Dirkx M. F., Pasman J. W., Bloem B. R., Helmich R. C. (2017). Cognitive stress reduces the effect of levodopa on Parkinson’s resting tremor. CNS Neurosci. Ther. 23, 209–215. 10.1111/cns.12670
    1. Zatorre R. J., Chen J. L., Penhune V. B. (2007). When the brain plays music: auditory-motor interactions in music perception and production. Nat. Rev. Neurosci. 8, 547–558. 10.1038/nrn2152
    1. Zheng A., Sakari R., Cheng S., Hietikko A., Moilanen P., Timonen J., et al. . (2009). Effects of a low-frequency sound wave therapy programme on functional capacity, blood circulation and bone metabolism in frail old men and women. Clin. Rehabil. 23, 897–908. 10.1177/0269215509337273

Source: PubMed

3
Abonnieren