Natural Products for the Treatment of Autoimmune Arthritis: Their Mechanisms of Action, Targeted Delivery, and Interplay with the Host Microbiome

Steven Dudics, David Langan, Rakeshchandra R Meka, Shivaprasad H Venkatesha, Brian M Berman, Chun-Tao Che, Kamal D Moudgil, Steven Dudics, David Langan, Rakeshchandra R Meka, Shivaprasad H Venkatesha, Brian M Berman, Chun-Tao Che, Kamal D Moudgil

Abstract

Rheumatoid arthritis (RA) is a chronic, debilitating illness characterized by painful swelling of the joints, inflammation of the synovial lining of the joints, and damage to cartilage and bone. Several anti-inflammatory and disease-modifying drugs are available for RA therapy. However, the prolonged use of these drugs is associated with severe side effects. Furthermore, these drugs are effective only in a proportion of RA patients. Hence, there is a need to search for new therapeutic agents that are effective yet safe. Interestingly, a variety of herbs and other natural products offer a vast resource for such anti-arthritic agents. We discuss here the basic features of RA pathogenesis; the commonly used animal models of RA; the mainstream drugs used for RA; the use of well-characterized natural products possessing anti-arthritic activity; the application of nanoparticles for efficient delivery of such products; and the interplay between dietary products and the host microbiome for maintenance of health and disease induction. We believe that with several advances in the past decade in the characterization and functional studies of natural products, the stage is set for widespread clinical testing and/or use of these products for the treatment of RA and other diseases.

Keywords: EGCG; Tripterygium wilfordii; adjuvant-induced arthritis; arthritis; celastrol; curcumin; dietary supplements; green tea; inflammation; liposomes; microbiome; nanoparticles; natural products; resveratrol; rheumatoid arthritis; targeted delivery; traditional medicine; triptolide.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Immunopathogenesis of experimental autoimmune arthritis. Schematic representation of the key pathways is shown: The presentation of an autoantigen to autoreactive T cells and their differentiation into major T helper (Th) cell subsets under the influence of various cytokines; the activation and secretion of pro-inflammatory cytokines by myeloid cells; the T-B cell collaboration leading to autoantibody production by plasma cells; and the osteoimmune cross-talk leading to osteoclast differentiation. These intricate pathways regulate autoimmune inflammation of the synovial joint as shown by arrows (leading to activation/induction) and blunt ends (leading to suppression/inhibition).
Figure 2
Figure 2
Schematic representation of different types of nanoparticles for the delivery of natural products. (A) Polymer nanoparticles encapsulating triptolide; (B) Liposomes loaded with triptolide; (C) Nanoemulsions entrapping curcumin; (D) Micelles encapsulating curcumin; and (E) Lipid core nanocapsules co-encapsulating resveratrol and curcumin.

References

    1. Du Montcel S.T., Michou L., Petit-Teixeira E., Osorio J., Lemaire I., Lasbleiz S., Pierlot C., Quillet P., Bardin T., Prum B., et al. New classification of HLA-DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility. Arthritis Rheumatol. 2005;52:1063–1068. doi: 10.1002/art.20989.
    1. Fugger L., Svejgaard A. Association of MHC and rheumatoid arthritis. HLA-DR4 and rheumatoid arthritis: Studies in mice and men. Arthritis Res. 2000;2:208–211. doi: 10.1186/ar89.
    1. Makrygiannakis D., Hermansson M., Ulfgren A.K., Nicholas A.P., Zendman A.J., Eklund A., Grunewald J., Skold C.M., Klareskog L., Catrina A.I. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann. Rheum. Dis. 2008;67:1488–1492. doi: 10.1136/ard.2007.075192.
    1. Snir O., Widhe M., von Spee C., Lindberg J., Padyukov L., Lundberg K., Engstrom A., Venables P.J., Lundeberg J., Holmdahl R., et al. Multiple antibody reactivities to citrullinated antigens in sera from patients with rheumatoid arthritis: Association with HLA-DRB1 alleles. Ann. Rheum. Dis. 2009;68:736–743. doi: 10.1136/ard.2008.091355.
    1. Van der Helm-van Mil A.H., Verpoort K.N., Breedveld F.C., Huizinga T.W., Toes R.E., de Vries R.R. The HLA-DRB1 shared epitope alleles are primarily a risk factor for anti-cyclic citrullinated peptide antibodies and are not an independent risk factor for development of rheumatoid arthritis. Arthritis Rheumatol. 2006;54:1117–1121. doi: 10.1002/art.21739.
    1. Alamanos Y., Drosos A.A. Epidemiology of adult rheumatoid arthritis. Autoimmun. Rev. 2005;4:130–136. doi: 10.1016/j.autrev.2004.09.002.
    1. Crowson C.S., Matteson E.L., Myasoedova E., Michet C.J., Ernste F.C., Warrington K.J., Davis J.M., III, Hunder G.G., Therneau T.M., Gabriel S.E. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheumatol. 2011;63:633–639. doi: 10.1002/art.30155.
    1. Helmick C.G., Felson D.T., Lawrence R.C., Gabriel S., Hirsch R., Kwoh C.K., Liang M.H., Kremers H.M., Mayes M.D., Merkel P.A., et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheumatol. 2008;58:15–25. doi: 10.1002/art.23177.
    1. Silman A.J., Pearson J.E. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 2002;4:S265–S272. doi: 10.1186/ar578.
    1. Symmons D., Turner G., Webb R., Asten P., Barrett E., Lunt M., Scott D., Silman A. The prevalence of rheumatoid arthritis in the United Kingdom: New estimates for a new century. Rheumatology. 2002;41:793–800. doi: 10.1093/rheumatology/41.7.793.
    1. Hootman J.M., Helmick C.G., Barbour K.E., Theis K.A., Boring M.A. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults, 2015–2040. Arthritis Rheumatol. 2016;68:1582–1587. doi: 10.1002/art.39692.
    1. Horiuchi A.C., Pereira L.H.C., Kahlow B.S., Silva M.B., Skare T.L. Rheumatoid arthritis in elderly and young patients. Rev. Bras. Reumatol. 2017;57:491–494. doi: 10.1016/j.rbr.2015.06.005.
    1. Kato E., Sawada T., Tahara K., Hayashi H., Tago M., Mori H., Nishino J., Matsui T., Tohma S. The age at onset of rheumatoid arthritis is increasing in Japan: A nationwide database study. Int. J. Rheum. Dis. 2017;20:839–845. doi: 10.1111/1756-185X.12998.
    1. Kobak S., Bes C. An autumn tale: Geriatric rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2018;10:3–11. doi: 10.1177/1759720X17740075.
    1. Harris E.D., Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy. N. Engl. J. Med. 1990;322:1277–1289.
    1. McInnes I.B., Schett G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011;365:2205–2219. doi: 10.1056/NEJMra1004965.
    1. Yanni G., Whelan A., Feighery C., Bresnihan B. Synovial tissue macrophages and joint erosion in rheumatoid arthritis. Ann. Rheum. Dis. 1994;53:39–44. doi: 10.1136/ard.53.1.39.
    1. Morco S., Bowden A. Ulnar drift in rheumatoid arthritis: A review of biomechanical etiology. J. Biomech. 2015;48:725–728. doi: 10.1016/j.jbiomech.2014.12.052.
    1. Eberhardt K., Johnson P.M., Rydgren L. The occurrence and significance of hand deformities in early rheumatoid arthritis. Br. J. Rheumatol. 1991;30:211–213. doi: 10.1093/rheumatology/30.3.211.
    1. Palmer D.G., Hogg N., Highton J., Hessian P.A., Denholm I. Macrophage migration and maturation within rheumatoid nodules. Arthritis Rheumatol. 1987;30:728–736. doi: 10.1002/art.1780300702.
    1. Sayah A., English J.C., III Rheumatoid arthritis: A review of the cutaneous manifestations. J. Am. Acad. Dermatol. 2005;53:191–209. doi: 10.1016/j.jaad.2004.07.023.
    1. Gavrila B.I., Ciofu C., Stoica V. Biomarkers in Rheumatoid Arthritis, what is new? J. Med. Life. 2016;9:144–148.
    1. Deane K.D., Norris J.M., Holers V.M. Preclinical rheumatoid arthritis: Identification, evaluation, and future directions for investigation. Rheum. Dis. Clin. N. Am. 2010;36:213–241. doi: 10.1016/j.rdc.2010.02.001.
    1. Chun-Lai T., Murad S., Erlandsson M.C., Hussein H., Sulaiman W., Dhaliwal J.S., Bokarewa M.I. Recognizing rheumatoid arthritis: Oncoprotein survivin opens new possibilities: A population-based case-control study. Medicine. 2015;94:e468. doi: 10.1097/MD.0000000000000468.
    1. Lohr J., Knoechel B., Nagabhushanam V., Abbas A.K. T-cell tolerance and autoimmunity to systemic and tissue-restricted self-antigens. Immunol. Rev. 2005;204:116–127. doi: 10.1111/j.0105-2896.2005.00241.x.
    1. Ring G.H., Lakkis F.G. Breakdown of self-tolerance and the pathogenesis of autoimmunity. Semin. Nephrol. 1999;19:25–33.
    1. Veale D.J., Orr C., Fearon U. Cellular and molecular perspectives in rheumatoid arthritis. Semin. Immunopathol. 2017;39:343–354. doi: 10.1007/s00281-017-0633-1.
    1. Bluestone J.A., Mackay C.R., O’Shea J.J., Stockinger B. The functional plasticity of T cell subsets. Nat. Rev. Immunol. 2009;9:811–816. doi: 10.1038/nri2654.
    1. Mucida D., Cheroutre H. The many face-lifts of CD4 T helper cells. Adv. Immunol. 2010;107:139–152.
    1. Calabresi E., Petrelli F., Bonifacio A.F., Puxeddu I., Alunno A. One year in review 2018: Pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 2018;36:175–184.
    1. Guo Q., Wang Y., Xu D., Nossent J., Pavlos N.J., Xu J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:1–14. doi: 10.1038/s41413-018-0016-9.
    1. Brand D.D., Latham K.A., Rosloniec E.F. Collagen-induced arthritis. Nat. Protoc. 2007;2:1269–1275. doi: 10.1038/nprot.2007.173.
    1. Choudhary N., Bhatt L.K., Prabhavalkar K.S. Experimental animal models for rheumatoid arthritis. Immunopharmacol. Immunotoxicol. 2018;40:193–200. doi: 10.1080/08923973.2018.1434793.
    1. Astry B., Venkatesha S.H., Laurence A., Christensen-Quick A., Garzino-Demo A., Frieman M.B., O’Shea J.J., Moudgil K.D. Celastrol, a Chinese herbal compound, controls autoimmune inflammation by altering the balance of pathogenic and regulatory T cells in the target organ. Clin. Immunol. 2015;157:228–238. doi: 10.1016/j.clim.2015.01.011.
    1. Dudics S., Venkatesha S.H., Moudgil K.D. The micro-RNA expression profiles of autoimmune arthritis reveal novel biomarkers of the disease and therapeutic response. Int. J. Mol. Sci. 2018;19:2293. doi: 10.3390/ijms19082293.
    1. De Castro Costa M., De Sutter P., Gybels J., Van Hees J. Adjuvant-induced arthritis in rats: A possible animal model of chronic pain. Pain. 1981;10:173–185. doi: 10.1016/0304-3959(81)90193-7.
    1. Whitehouse M.W. Adjuvant arthritis 50 years on: The impact of the 1956 article by CM Pearson, ‘Development of arthritis, periarthritis and periostitis in rats given adjuvants’. Inflamm. Res. 2007;56:133–138. doi: 10.1007/s00011-006-6117-8.
    1. Whiteley P.E., Dalrymple S.A. Models of inflammation: Adjuvant-induced arthritis in the rat. Curr. Protoc. Pharmacol. 2001 doi: 10.1002/0471141755.ph0505s13.
    1. Kouskoff V., Korganow A.S., Duchatelle V., Degott C., Benoist C., Mathis D. Organ-specific disease provoked by systemic autoimmunity. Cell. 1996;87:811–822. doi: 10.1016/S0092-8674(00)81989-3.
    1. Christensen A.D., Haase C., Cook A.D., Hamilton J.A. K/BxN serum-transfer arthritis as a model for human inflammatory arthritis. Front. Immunol. 2016;7:213. doi: 10.3389/fimmu.2016.00213.
    1. Glant T.T., Radacs M., Nagyeri G., Olasz K., Laszlo A., Boldizsar F., Hegyi A., Finnegan A., Mikecz K. Proteoglycan-induced arthritis and recombinant human proteoglycan aggrecan G1 domain-induced arthritis in BALB/c mice resembling two subtypes of rheumatoid arthritis. Arthritis Rheumatol. 2011;63:1312–1321. doi: 10.1002/art.30261.
    1. Nabozny G.H., Baisch J.M., Cheng S., Cosgrove D., Griffiths M.M., Luthra H.S., David C.S. HLA-DQ8 transgenic mice are highly susceptible to collagen-induced arthritis: A novel model for human polyarthritis. J. Exp. Med. 1996;183:27–37. doi: 10.1084/jem.183.1.27.
    1. Crofford L.J. Use of NSAIDs in treating patients with arthritis. Arthritis Res. Ther. 2013;15(Suppl. 3):S2. doi: 10.1186/ar4174.
    1. Schett G., Emery P., Tanaka Y., Burmester G., Pisetsky D.S., Naredo E., Fautrel B., van Vollenhoven R. Tapering biologic and conventional DMARD therapy in rheumatoid arthritis: Current evidence and future directions. Ann. Rheum. Dis. 2016;75:1428–1437. doi: 10.1136/annrheumdis-2016-209201.
    1. Gerards A.H., de Lathouder S., de Groot E.R., Dijkmans B.A., Aarden L.A. Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis. Rheumatology. 2003;42:1189–1196. doi: 10.1093/rheumatology/keg323.
    1. Rudwaleit M., Yin Z., Siegert S., Grolms M., Radbruch A., Braun J., Sieper J. Response to methotrexate in early rheumatoid arthritis is associated with a decrease of T cell derived tumour necrosis factor alpha, increase of interleukin 10, and predicted by the initial concentration of interleukin 4. Ann. Rheum. Dis. 2000;59:311–314. doi: 10.1136/ard.59.4.311.
    1. Brown P.M., Pratt A.G., Isaacs J.D. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat. Rev. Rheumatol. 2016;12:731–742. doi: 10.1038/nrrheum.2016.175.
    1. Tchetverikov I., Kraan M.C., van El B., Hanemaaijer R., DeGroot J., Huizinga T.W. Leflunomide and methotrexate reduce levels of activated matrix metalloproteinases in complexes with α2 macroglobulin in serum of rheumatoid arthritis patients. Ann. Rheum. Dis. 2008;67:128–130. doi: 10.1136/ard.2006.067827.
    1. Cronstein B.N. Going with the flow: Methotrexate, adenosine, and blood flow. Ann. Rheum. Dis. 2006;65:421–422. doi: 10.1136/ard.2005.049601.
    1. Hasko G., Cronstein B. Regulation of inflammation by adenosine. Front. Immunol. 2013;4:85. doi: 10.3389/fimmu.2013.00085.
    1. Lopez-Olivo M.A., Siddhanamatha H.R., Shea B., Tugwell P., Wells G.A., Suarez-Almazor M.E. Methotrexate for treating rheumatoid arthritis. Cochrane Database Syst. Rev. 2014 doi: 10.1002/14651858.CD000957.pub2.
    1. Carneiro S.C., Cassia F.F., Lamy F., Chagas V.L., Ramos-e-Silva M. Methotrexate and liver function: A study of 13 psoriasis cases treated with different cumulative dosages. J. Eur. Acad. Dermatol. Venereol. 2008;22:25–29. doi: 10.1111/j.1468-3083.2007.02322.x.
    1. Cheng H.S., Rademaker M. Monitoring methotrexate-induced liver fibrosis in patients with psoriasis: Utility of transient elastography. Psoriasis. 2018;8:21–29. doi: 10.2147/PTT.S141629.
    1. Conway R., Carey J.J. Risk of liver disease in methotrexate treated patients. World J. Hepatol. 2017;9:1092–1100. doi: 10.4254/wjh.v9.i26.1092.
    1. Monaco C., Nanchahal J., Taylor P., Feldmann M. Anti-TNF therapy: Past, present and future. Int. Immunol. 2015;27:55–62. doi: 10.1093/intimm/dxu102.
    1. Weinblatt M.E., Keystone E.C., Furst D.E., Moreland L.W., Weisman M.H., Birbara C.A., Teoh L.A., Fischkoff S.A., Chartash E.K. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: The ARMADA trial. Arthritis Rheumatol. 2003;48:35–45. doi: 10.1002/art.10697.
    1. Roda G., Jharap B., Neeraj N., Colombel J.F. Loss of Response to Anti-TNFs: Definition, Epidemiology, and Management. Clin. Transl. Gastroenterol. 2016;7:e135. doi: 10.1038/ctg.2015.63.
    1. Goh L., Jewell T., Laversuch C., Samanta A. A systematic review of the influence of anti-TNF on infection rates in patients with rheumatoid arthritis. Rev. Bras. Reumatol. 2013;53:501–515. doi: 10.1016/j.rbr.2012.12.001.
    1. Kim G.W., Lee N.R., Pi R.H., Lim Y.S., Lee Y.M., Lee J.M., Jeong H.S., Chung S.H. IL-6 inhibitors for treatment of rheumatoid arthritis: Past, present, and future. Arch. Pharm. Res. 2015;38:575–584. doi: 10.1007/s12272-015-0569-8.
    1. Oldfield V., Dhillon S., Plosker G.L. Tocilizumab: A review of its use in the management of rheumatoid arthritis. Drugs. 2009;69:609–632. doi: 10.2165/00003495-200969050-00007.
    1. Navarro-Millan I., Singh J.A., Curtis J.R. Systematic review of tocilizumab for rheumatoid arthritis: A new biologic agent targeting the interleukin-6 receptor. Clin. Ther. 2012;34:788–802. doi: 10.1016/j.clinthera.2012.02.014.
    1. Smolen J.S., Schoels M.M., Nishimoto N., Breedveld F.C., Burmester G.R., Dougados M., Emery P., Ferraccioli G., Gabay C., Gibofsky A., et al. Consensus statement on blocking the effects of interleukin-6 and in particular by interleukin-6 receptor inhibition in rheumatoid arthritis and other inflammatory conditions. Ann. Rheum. Dis. 2013;72:482–492. doi: 10.1136/annrheumdis-2012-202469.
    1. Hench P.S., Kendall E.C., Slocumb C.H., Polley H.F. Effects of cortisone acetate and pituitary ACTH on rheumatoid arthritis, rheumatic fever and certain other conditions. Arch. Intern. Med. 1950;85:545–666. doi: 10.1001/archinte.1950.00230100002001.
    1. Barnes P.J. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br. J. Pharmacol. 2006;148:245–254. doi: 10.1038/sj.bjp.0706736.
    1. Mundell L., Lindemann R., Douglas J. Monitoring long-term oral corticosteroids. BMJ Open Qual. 2017;6:e000209. doi: 10.1136/bmjoq-2017-000209.
    1. Youssef J., Novosad S.A., Winthrop K.L. Infection risk and safety of corticosteroid use. Rheum. Dis. Clin. N. Am. 2016;42:157–176. doi: 10.1016/j.rdc.2015.08.004.
    1. Clarke T.C., Black L.I., Stussman B.J., Barnes P.M., Nahin R.L. Trends in the Use of Complementary Health Approaches Among Adults: United States, 2002–2012. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; Hyattsville, MD, USA: 2013.
    1. Barnes P.M., Bloom B., Nahin R.L. Complementary and Alternative Medicine Use Among Adults and Children: United States, 2007. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; Hyattsville, MD, USA: 2008. pp. 1–23. National Health Statistics Reports.
    1. Rajesh E., Sankari L.S., Malathi L., Krupaa J.R. Naturally occurring products in cancer therapy. J. Pharm. Bioallied Sci. 2015;7:S181–S183. doi: 10.4103/0975-7406.155895.
    1. Kim K.J., Liu X., Komabayashi T., Jeong S.I., Selli S. Natural products for infectious diseases. Evid.-Based Complement. Altern. Med. 2016;2016:9459047. doi: 10.1155/2016/9459047.
    1. Shamsizadeh A., Roohbakhsh A., Ayoobi F., Moghaddamahmadi A. Nutrition and Lifestyle in Neurological Autoimmune Diseases. Academic Press/Elsevier; Cambridge, MA, USA: 2017. The role of natural products in the prevention and treatment of multiple sclerosis; pp. 249–260.
    1. Chang C.L., Chen Y.C., Chen H.M., Yang N.S., Yang W.C. Natural cures for type 1 diabetes: A review of phytochemicals, biological actions, and clinical potential. Curr. Med. Chem. 2013;20:899–907.
    1. Kapoor B., Gupta R., Gupta M. Natural products in treatment of rheumatoid arthritis. Int. J. Green Pharm. 2017;11:S356–S363.
    1. Venkatesha S.H., Rajaiah R., Berman B.M., Moudgil K.D. Immunomodulation of autoimmune arthritis by herbal CAM. Evid.-Based Complement. Altern. Med. 2011;2011:986797. doi: 10.1155/2011/986797.
    1. Venkatesha S., Acharya B., Moudgil K. Natural products as source of anti-inflammatory drugs. In: Cavaillo J.-M., Singer M., editors. Inflammation: From Molecular and Cellular Mechanisms to the Clinic. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2018. pp. 1607–1635. Chapter 64.
    1. Ben-Arye E., Frenkel M., Klein A., Scharf M. Attitudes toward integration of complementary and alternative medicine in primary care: Perspectives of patients, physicians and complementary practitioners. Patient Educ. Couns. 2008;70:395–402. doi: 10.1016/j.pec.2007.11.019.
    1. Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014;4:177. doi: 10.3389/fphar.2013.00177.
    1. Cascao R., Vidal B., Raquel H., Neves-Costa A., Figueiredo N., Gupta V., Fonseca J.E., Moita L.F. Effective treatment of rat adjuvant-induced arthritis by celastrol. Autoimmun. Rev. 2012;11:856–862. doi: 10.1016/j.autrev.2012.02.022.
    1. Venkatesha S.H., Dudics S., Astry B., Moudgil K.D. Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog. Dis. 2016;74:ftw059. doi: 10.1093/femspd/ftw059.
    1. Nanjundaiah S.M., Venkatesha S.H., Yu H., Tong L., Stains J.P., Moudgil K.D. Celastrus and its bioactive celastrol protect against bone damage in autoimmune arthritis by modulating osteoimmune cross-talk. J. Biol. Chem. 2012;287:22216–22226. doi: 10.1074/jbc.M112.356816.
    1. Zhang R.X., Fan A.Y., Zhou A.N., Moudgil K.D., Ma Z.Z., Lee D.Y., Fong H.H., Berman B.M., Lao L. Extract of the Chinese herbal formula Huo Luo Xiao Ling Dan inhibited adjuvant arthritis in rats. J. Ethnopharmacol. 2009;121:366–371. doi: 10.1016/j.jep.2008.11.018.
    1. Busbee P.B., Rouse M., Nagarkatti M., Nagarkatti P.S. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr. Rev. 2013;71:353–369. doi: 10.1111/nure.12024.
    1. Che C.T., Wong M.S., Lam C.W. Natural products from chinese medicines with potential benefits to bone health. Molecules. 2016;21:239. doi: 10.3390/molecules21030239.
    1. Venkatesha S.H., Yu H., Rajaiah R., Tong L., Moudgil K.D. Celastrus-derived celastrol suppresses autoimmune arthritis by modulating antigen-induced cellular and humoral effector responses. J. Biol. Chem. 2011;286:15138–15146. doi: 10.1074/jbc.M111.226365.
    1. Che C.T., Wong M.S. Ligustrum lucidum and its Constituents: A mini-review on the anti-osteoporosis potential. Nat. Prod. Commun. 2015;10:2189–2194.
    1. Bao J., Dai S.M. A Chinese herb Tripterygium wilfordii Hook F in the treatment of rheumatoid arthritis: Mechanism, efficacy, and safety. Rheumatol. Int. 2011;31:1123–1129. doi: 10.1007/s00296-011-1841-y.
    1. Tao X., Schulze-Koops H., Ma L., Cai J., Mao Y., Lipsky P.E. Effects of Tripterygium wilfordii Hook F extracts on induction of cyclooxygenase 2 activity and prostaglandin E2 production. Arthritis Rheumatol. 1998;41:130–138. doi: 10.1002/1529-0131(199801)41:1<130::AID-ART16>;2-4.
    1. Guo W., Ma L., Tao X. In vitro inhibitive effects of Tripterygium wilforii on NO production, iNOS activity, and iNOS-mRNA expression in chondrocyrtes of patients with rheumatoid arthritis. Zhonghua Yi Xue Za Zhi. 2001;81:1035–1037.
    1. Lin N., Sato T., Ito A. Triptolide, a novel diterpenoid triepoxide from Tripterygium wilfordii Hook F, suppresses the production and gene expression of pro-matrix metalloproteinases 1 and 3 and augments those of tissue inhibitors of metalloproteinases 1 and 2 in human synovial fibroblasts. Arthritis Rheumatol. 2001;44:2193–2200.
    1. Sylvester J., Liacini A., Li W.Q., Dehnade F., Zafarullah M. Tripterygium wilfordii Hook F extract suppresses proinflammatory cytokine-induced expression of matrix metalloproteinase genes in articular chondrocytes by inhibiting activating protein-1 and nuclear factor-κB activities. Mol. Pharmacol. 2001;59:1196–1205. doi: 10.1124/mol.59.5.1196.
    1. Pandya J.M., Lundell A.C., Hallstrom M., Andersson K., Nordstrom I., Rudin A. Circulating T helper and T regulatory subsets in untreated early rheumatoid arthritis and healthy control subjects. J. Leukoc. Biol. 2016;100:823–833. doi: 10.1189/jlb.5A0116-025R.
    1. Chan M.A., Kohlmeier J.E., Branden M., Jung M., Benedict S.H. Triptolide is more effective in preventing T cell proliferation and interferon-γ production than is FK506. Phytother. Res. 1999;13:464–467. doi: 10.1002/(SICI)1099-1573(199909)13:6<464::AID-PTR483>;2-4.
    1. Tong K.K., Yang D., Chan E.Y., Chiu P.K., Yau K.S., Lau C.S. Downregulation of lymphocyte activity and human synovial fibroblast growth in rheumatoid arthritis by triptolide. Drug Dev. Res. 1999;47:144–153. doi: 10.1002/(SICI)1098-2299(199907)47:3<144::AID-DDR5>;2-0.
    1. Li X.W., Weir M.R. Radix Tripterygium wilfordii—A Chinese herbal medicine with potent immunosuppressive properties. Transplantation. 1990;50:82–86. doi: 10.1097/00007890-199007000-00015.
    1. Ho L.J., Chang D.M., Chang M.L., Kuo S.Y., Lai J.H. Mechanism of immunosuppression of the antirheumatic herb TWHf in human T cells. J. Rheumatol. 1999;26:14–24.
    1. Jiang M., Zha Q., Zhang C., Lu C., Yan X., Zhu W., Liu W., Tu S., Hou L., Wang C., et al. Predicting and verifying outcome of Tripterygium wilfordii Hook F based therapy in rheumatoid arthritis: From open to double-blinded randomized trial. Sci. Rep. 2015;5:9700. doi: 10.1038/srep09700.
    1. Jiao J., Tang X.P., Yuan J., Liu X., Liu H., Zhang C.Y., Wang L.Y., Jiang Q. Effect of external applying compound Tripterygium wilfordii Hook F on joint pain of rheumatoid arthritis patients. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2016;36:29–34.
    1. Lv Q.W., Zhang W., Shi Q., Zheng W.J., Li X., Chen H., Wu Q.J., Jiang W.L., Li H.B., Gong L., et al. Comparison of Tripterygium wilfordii Hook F with methotrexate in the treatment of active rheumatoid arthritis (TRIFRA): A randomised, controlled clinical trial. Ann. Rheum. Dis. 2015;74:1078–1086. doi: 10.1136/annrheumdis-2013-204807.
    1. Wang H.L., Jiang Q., Feng X.H., Zhang H.D., Ge L., Luo C.G., Gong X., Li B. Tripterygium wilfordii Hook F versus conventional synthetic disease-modifying anti-rheumatic drugs as monotherapy for rheumatoid arthritis: A systematic review and network meta-analysis. BMC Complement. Altern. Med. 2016;16:215. doi: 10.1186/s12906-016-1194-x.
    1. Wang J., Chen N., Fang L., Feng Z., Li G., Mucelli A., Zhang X., Zhou X. A systematic review about the efficacy and safety of Tripterygium wilfordii Hook F preparations used for the management of rheumatoid arthritis. Evid.-Based Complement. Altern. Med. 2018;2018:1567463.
    1. Wang X., Zu Y., Huang L., Yu J., Zhao H., Wen C., Chen Z., Xu Z. Treatment of rheumatoid arthritis with combination of methotrexate and Tripterygium wilfordii: A meta-analysis. Life Sci. 2017;171:45–50. doi: 10.1016/j.lfs.2017.01.004.
    1. Zhou Y.Y., Xia X., Peng W.K., Wang Q.H., Peng J.H., Li Y.L., Wu J.X., Zhang J.Y., Zhao Y., Chen X.M., et al. The Effectiveness and Safety of Tripterygium wilfordii Hook F Extracts in Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2018;9:356. doi: 10.3389/fphar.2018.00356.
    1. Goldbach-Mansky R., Wilson M., Fleischmann R., Olsen N., Silverfield J., Kempf P., Kivitz A., Sherrer Y., Pucino F., Csako G., et al. Comparison of Tripterygium wilfordii Hook F versus sulfasalazine in the treatment of rheumatoid arthritis: A randomized trial. Ann. Intern. Med. 2009;151:229–240. doi: 10.7326/0003-4819-151-4-200908180-00005.
    1. Liu Q., Chen T., Chen G., Li N., Wang J., Ma P., Cao X. Immunosuppressant triptolide inhibits dendritic cell-mediated chemoattraction of neutrophils and T cells through inhibiting Stat3 phosphorylation and NF-κB activation. Biochem. Biophys. Res. Commun. 2006;345:1122–1130. doi: 10.1016/j.bbrc.2006.05.024.
    1. Yang Y., Liu Z., Tolosa E., Yang J., Li L. Triptolide induces apoptotic death of T lymphocyte. Immunopharmacology. 1998;40:139–149. doi: 10.1016/S0162-3109(98)00036-8.
    1. Chen S.R., Dai Y., Zhao J., Lin L., Wang Y., Wang Y. A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F. Front. Pharmacol. 2018;9:104. doi: 10.3389/fphar.2018.00104.
    1. Huang J., Zhou L., Wu H., Pavlos N., Chim S.M., Liu Q., Zhao J., Xue W., Tan R.X., Ye J., et al. Triptolide inhibits osteoclast formation, bone resorption, RANKL-mediated NF-κB activation and titanium particle-induced osteolysis in a mouse model. Mol. Cell. Endocrinol. 2015;399:346–353. doi: 10.1016/j.mce.2014.10.016.
    1. Gong Y., Huang X., Wang D., Li M., Liu Z. Triptolide protects bone against destruction by targeting RANKL-mediated ERK/AKT signalling pathway in the collagen-induced rheumatoid arthritis. Biomed. Res. 2017;28:4111–4116.
    1. Li Y., Tian Y., Zhu W., Gong J., Zhang W., Yu C., Gu L., Li N., Li J. Triptolide induces suppressor of cytokine signaling-3 expression and promotes lamina propria mononuclear cells apoptosis in Crohn’s colitis. Int. Immunopharmacol. 2013;16:268–274. doi: 10.1016/j.intimp.2013.04.018.
    1. Zhang W., Li F., Gao W. Tripterygium wilfordii Inhibiting Angiogenesis for Rheumatoid Arthritis Treatment. J. Natl. Med. Assoc. 2017;109:142–148. doi: 10.1016/j.jnma.2017.02.007.
    1. Cascao R., Vidal B., Lopes I.P., Paisana E., Rino J., Moita L.F., Fonseca J.E. Decrease of CD68 Synovial Macrophages in Celastrol Treated Arthritic Rats. PLoS ONE. 2015;10:e0142448. doi: 10.1371/journal.pone.0142448.
    1. Kim H.R., Rajaiah R., Wu Q.L., Satpute S.R., Tan M.T., Simon J.E., Berman B.M., Moudgil K.D. Green tea protects rats against autoimmune arthritis by modulating disease-related immune events. J. Nutr. 2008;138:2111–2116. doi: 10.3945/jn.108.089912.
    1. Ramadan G., El-Beih N.M., Talaat R.M., Abd El-Ghffar E.A. Anti-inflammatory activity of green versus black tea aqueous extract in a rat model of human rheumatoid arthritis. Int. J. Rheum. Dis. 2017;20:203–213. doi: 10.1111/1756-185X.12666.
    1. Haqqi T.M., Anthony D.D., Gupta S., Ahmad N., Lee M.S., Kumar G.K., Mukhtar H. Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc. Natl. Acad. Sci. USA. 1999;96:4524–4529. doi: 10.1073/pnas.96.8.4524.
    1. Bhutia Pemba H., Sharangi A.B., Lepcha R., Tamang D. Bioactive Compounds and Antioxidant Properties of Tea: Status, Global Research and Potentialities. J. Tea Sci. Res. 2015;5:1–13.
    1. Ahmed S., Marotte H., Kwan K., Ruth J.H., Campbell P.L., Rabquer B.J., Pakozdi A., Koch A.E. Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production. Proc. Natl. Acad. Sci. USA. 2008;105:14692–14697. doi: 10.1073/pnas.0802675105.
    1. Fechtner S., Singh A., Chourasia M., Ahmed S. Molecular insights into the differences in anti-inflammatory activities of green tea catechins on IL-1β signaling in rheumatoid arthritis synovial fibroblasts. Toxicol. Appl. Pharmacol. 2017;329:112–120. doi: 10.1016/j.taap.2017.05.016.
    1. Singh A.K., Umar S., Riegsecker S., Chourasia M., Ahmed S. Regulation of transforming growth factor β-activated kinase activation by epigallocatechin-3-gallate in rheumatoid arthritis synovial fibroblasts: suppression of K63-linked Autoubiquitination of tumor necrosis factor receptor-associated factor 6. Arthritis Rheumatol. 2016;68:347–358. doi: 10.1002/art.39447.
    1. Min S.Y., Yan M., Kim S.B., Ravikumar S., Kwon S.R., Vanarsa K., Kim H.Y., Davis L.S., Mohan C. Green tea epigallocatechin-3-gallate suppresses autoimmune arthritis through indoleamine-2,3-dioxygenase expressing dendritic cells and the nuclear factor, erythroid 2-like 2 antioxidant pathway. J. Inflamm. 2015;12:53. doi: 10.1186/s12950-015-0097-9.
    1. Lee S.Y., Jung Y.O., Ryu J.G., Oh H.J., Son H.J., Lee S.H., Kwon J.E., Kim E.K., Park M.K., Park S.H., et al. Epigallocatechin-3-gallate ameliorates autoimmune arthritis by reciprocal regulation of T helper-17 regulatory T cells and inhibition of osteoclastogenesis by inhibiting STAT3 signaling. J. Leukoc. Biol. 2016;100:559–568. doi: 10.1189/jlb.3A0514-261RR.
    1. Oka Y., Iwai S., Amano H., Irie Y., Yatomi K., Ryu K., Yamada S., Inagaki K., Oguchi K. Tea polyphenols inhibit rat osteoclast formation and differentiation. J. Pharmacol. Sci. 2012;118:55–64. doi: 10.1254/jphs.11082FP.
    1. Rambod M., Nazarinia M., Raieskarimian F. The impact of dietary habits on the pathogenesis of rheumatoid arthritis: A case-control study. Clin. Rheumatol. 2018 doi: 10.1007/s10067-018-4151-x.
    1. Gupta S.C., Kismali G., Aggarwal B.B. Curcumin, a component of turmeric: From farm to pharmacy. Biofactors. 2013;39:2–13. doi: 10.1002/biof.1079.
    1. Srivastava S., Saksena A.K., Khattri S., Kumar S., Dagur R.S. Curcuma longa extract reduces inflammatory and oxidative stress biomarkers in osteoarthritis of knee: A four-month, double-blind, randomized, placebo-controlled trial. Inflammopharmacology. 2016;24:377–388. doi: 10.1007/s10787-016-0289-9.
    1. Zdrojewicz Z., Szyca M., Popowicz E., Michalik T., Smieszniak B. Turmeric—Not only spice. Polski Merkuriusz Lekarski. 2017;42:227–230.
    1. Zheng Z., Sun Y., Liu Z., Zhang M., Li C., Cai H. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug Des. Dev. Ther. 2015;9:4931–4942.
    1. Kumar A., Dhawan S., Hardegen N.J., Aggarwal B.B. Curcumin (Diferuloylmethane) inhibition of tumor necrosis factor (TNF)-mediated adhesion of monocytes to endothelial cells by suppression of cell surface expression of adhesion molecules and of nuclear factor-κB activation. Biochem. Pharmacol. 1998;55:775–783. doi: 10.1016/S0006-2952(97)00557-1.
    1. Yeh C.H., Chen T.P., Wu Y.C., Lin Y.M., Jing Lin P. Inhibition of NF-κB activation with curcumin attenuates plasma inflammatory cytokines surge and cardiomyocytic apoptosis following cardiac ischemia/reperfusion. J. Surg. Res. 2005;125:109–116. doi: 10.1016/j.jss.2004.11.009.
    1. Aggarwal B.B., Gupta S.C., Sung B. Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br. J. Pharmacol. 2013;169:1672–1692. doi: 10.1111/bph.12131.
    1. Shakibaei M., John T., Schulze-Tanzil G., Lehmann I., Mobasheri A. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochem. Pharmacol. 2007;73:1434–1445. doi: 10.1016/j.bcp.2007.01.005.
    1. Moore B.A., Aznavoorian S., Engler J.A., Windsor L.J. Induction of collagenase-3 (MMP-13) in rheumatoid arthritis synovial fibroblasts. Biochim. Biophys. Acta. 2000;1502:307–318. doi: 10.1016/S0925-4439(00)00056-9.
    1. Xue M., McKelvey K., Shen K., Minhas N., March L., Park S.Y., Jackson C.J. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology. 2014;53:2270–2279. doi: 10.1093/rheumatology/keu254.
    1. Rao C.V. Regulation of COX and LOX by curcumin. Adv. Exp. Med. Biol. 2007;595:213–226.
    1. Kapil Kumar A.K.R. Curcumin: A yellow magical spice of kitchen for treatment of rheumatoid arthritis. Int. Res. J. Pharm. 2011;2:29–31.
    1. Shang W., Zhao L.J., Dong X.L., Zhao Z.M., Li J., Zhang B.B., Cai H. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol. Med. Rep. 2016;14:3620–3626. doi: 10.3892/mmr.2016.5674.
    1. Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009;2:270–278. doi: 10.4161/oxim.2.5.9498.
    1. Coradini K., Friedrich R.B., Fonseca F.N., Vencato M.S., Andrade D.F., Oliveira C.M., Battistel A.P., Guterres S.S., da Rocha M.I., Pohlmann A.R., et al. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies. Eur. J. Pharm. Sci. 2015;78:163–170. doi: 10.1016/j.ejps.2015.07.012.
    1. Xuzhu G., Komai-Koma M., Leung B.P., Howe H.S., McSharry C., McInnes I.B., Xu D. Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function. Ann. Rheum. Dis. 2012;71:129–135. doi: 10.1136/ard.2011.149831.
    1. Koca S.S., Yolbas S., Yildirim A., Celik Z.B., Onalan E.E., Akin M. AB0108 resveratrol inhibits canonical wnt signaling and ameliorates experimental arthritis. Ann. Rheum. Dis. 2016;75:933. doi: 10.1136/annrheumdis-2016-eular.5934.
    1. Cheon Y.H., Kim H.O., Suh Y.S., Hur J.H., Jo W., Lim H.S., Hah Y.S., Sung M.J., Kwon D.Y., Lee S.I. Inhibitory effects for rheumatoid arthritis of dietary supplementation with resveratrol in collagen-induced arthritis. J. Rheum. Dis. 2015;22:93–101. doi: 10.4078/jrd.2015.22.2.93.
    1. Miao C.G., Yang Y.Y., He X., Li X.F., Huang C., Huang Y., Zhang L., Lv X.W., Jin Y., Li J. Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell. Signal. 2013;25:2069–2078. doi: 10.1016/j.cellsig.2013.04.002.
    1. Elmali N., Baysal O., Harma A., Esenkaya I., Mizrak B. Effects of resveratrol in inflammatory arthritis. Inflammation. 2007;30:1–6. doi: 10.1007/s10753-006-9012-0.
    1. Nguyen C., Savouret J.F., Widerak M., Corvol M.T., Rannou F. Resveratrol, potential therapeutic interest in joint disorders: A critical narrative review. Nutrients. 2017;9:45. doi: 10.3390/nu9010045.
    1. Nguyen C.H., Nakahama T., Dang T.T., Chu H.H., Van Hoang L., Kishimoto T., Nguyen N.T. Expression of aryl hydrocarbon receptor, inflammatory cytokines, and incidence of rheumatoid arthritis in Vietnamese dioxin-exposed people. J. Immunotoxicol. 2017;14:196–203. doi: 10.1080/1547691X.2017.1377323.
    1. Nguyen N.T., Nakahama T., Nguyen C.H., Tran T.T., Le V.S., Chu H.H., Kishimoto T. Aryl hydrocarbon receptor antagonism and its role in rheumatoid arthritis. J. Exp. Pharmacol. 2015;7:29–35.
    1. Ogando J., Tardáguila M., Díaz-Alderete A., Usategui A., Miranda-Ramos V., Martínez-Herrera D.J., de la Fuente L., García-León M.J., Moreno M.C., Escudero S., et al. Notch-regulated miR-223 targets the aryl hydrocarbon receptor pathway and increases cytokine production in macrophages from rheumatoid arthritis patients. Sci. Rep. 2016;6:20223. doi: 10.1038/srep20223.
    1. Almonte-Becerril M., Fernandez-Rodriguez J.A., Ramil-Gómez O., Riveiro-Naveira R.R., Hermida-Carballo L., Blanco F.J., Lopez-Armada M.J. Resveratrol attenuates synovial hyperplasia in an acute antigen-induced arthritis model by augmenting autophagy and decreasing angiogenesis. Osteoarthr. Cartil. 2017;25:S90–S91. doi: 10.1016/j.joca.2017.02.143.
    1. Abdel-Tawab M., Werz O., Schubert-Zsilavecz M. Boswellia serrata: An overall assessment of in vitro, preclinical, pharmacokinetic and clinical data. Clin. Pharmacokinet. 2011;50:349–369. doi: 10.2165/11586800-000000000-00000.
    1. Ammon H.P. Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine. 2010;17:862–867. doi: 10.1016/j.phymed.2010.03.003.
    1. Chrubasik S., Conradt C., Roufogalis B.D. Effectiveness of Harpagophytum extracts and clinical efficacy. Phytother. Res. 2004;18:187–189. doi: 10.1002/ptr.1416.
    1. Grant L., McBean D.E., Fyfe L., Warnock A.M. A review of the biological and potential therapeutic actions of Harpagophytum procumbens. Phytother. Res. 2007;21:199–209. doi: 10.1002/ptr.2029.
    1. Chrubasik C., Roufogalis B.D., Muller-Ladner U., Chrubasik S. A systematic review on the Rosa canina effect and efficacy profiles. Phytother. Res. 2008;22:725–733. doi: 10.1002/ptr.2400.
    1. Saaby L., Jager A.K., Moesby L., Hansen E.W., Christensen S.B. Isolation of immunomodulatory triterpene acids from a standardized rose hip powder (Rosa canina L.) Phytother. Res. 2011;25:195–201. doi: 10.1002/ptr.3241.
    1. Erowele G.I., Kalejaiye A.O. Pharmacology and therapeutic uses of cat’s claw. Am. J. Health Syst. Pharm. 2009;66:992–995. doi: 10.2146/ajhp080443.
    1. Rosenbaum C.C., O’Mathuna D.P., Chavez M., Shields K. Antioxidants and antiinflammatory dietary supplements for osteoarthritis and rheumatoid arthritis. Altern. Ther. Health Med. 2010;16:32–40.
    1. Di Lorenzo C., Dell’Agli M., Badea M., Dima L., Colombo E., Sangiovanni E., Restani P., Bosisio E. Plant food supplements with anti-inflammatory properties: A systematic review (II) Crit. Rev. Food Sci. Nutr. 2013;53:507–516. doi: 10.1080/10408398.2012.691916.
    1. Randall C., Randall H., Dobbs F., Hutton C., Sanders H. Randomized controlled trial of nettle sting for treatment of base-of-thumb pain. J. R. Soc. Med. 2000;93:305–309. doi: 10.1177/014107680009300607.
    1. Lakhan S.E., Ford C.T., Tepper D. Zingiberaceae extracts for pain: A systematic review and meta-analysis. Nutr. J. 2015;14:50. doi: 10.1186/s12937-015-0038-8.
    1. Semwal R.B., Semwal D.K., Combrinck S., Viljoen A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry. 2015;117:554–568. doi: 10.1016/j.phytochem.2015.07.012.
    1. Ji J.J., Lin Y., Huang S.S., Zhang H.L., Diao Y.P., Li K. Quercetin: A potential natural drug for adjuvant treatment of rheumatoid arthritis. Afr. J. Tradit. Complement. Altern. Med. 2013;10:418–421.
    1. Russo M., Spagnuolo C., Tedesco I., Bilotto S., Russo G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol. 2012;83:6–15. doi: 10.1016/j.bcp.2011.08.010.
    1. Efferth T., Kaina B. Toxicities by herbal medicines with emphasis to traditional Chinese medicine. Curr. Drug Metab. 2011;12:989–996. doi: 10.2174/138920011798062328.
    1. Byard R.W. A review of the potential forensic significance of traditional herbal medicines. J. Forensic. Sci. 2010;55:89–92. doi: 10.1111/j.1556-4029.2009.01252.x.
    1. Kim E.J., Chen Y., Huang J.Q., Li K.M., Razmovski-Naumovski V., Poon J., Chan K., Roufogalis B.D., McLachlan A.J., Mo S.L., et al. Evidence-based toxicity evaluation and scheduling of Chinese herbal medicines. J. Ethnopharmacol. 2013;146:40–61. doi: 10.1016/j.jep.2012.12.027.
    1. Watkins R., Wu L., Zhang C., Davis R.M., Xu B. Natural product-based nanomedicine: Recent advances and issues. Int. J. Nanomed. 2015;10:6055–6074.
    1. Shi J., Votruba A.R., Farokhzad O.C., Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010;10:3223–3230. doi: 10.1021/nl102184c.
    1. Anselmo A.C., Mitragotri S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016;1:10–29. doi: 10.1002/btm2.10003.
    1. Parveen S., Misra R., Sahoo S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8:147–166. doi: 10.1016/j.nano.2011.05.016.
    1. Bonifacio B.V., Silva P.B., Ramos M.A., Negri K.M., Bauab T.M., Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomed. 2014;9:1–15.
    1. Obeid M.A., Al Qaraghuli M.M., Alsaadi M., Alzahrani A.R., Niwasabutra K., Ferro V.A. Delivering natural products and biotherapeutics to improve drug efficacy. Ther. Deliv. 2017;8:947–956. doi: 10.4155/tde-2017-0060.
    1. Suri S.S., Fenniri H., Singh B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2007;2:16. doi: 10.1186/1745-6673-2-16.
    1. Singh R., Lillard J.W., Jr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009;86:215–223. doi: 10.1016/j.yexmp.2008.12.004.
    1. Yu X., Trase I., Ren M., Duval K., Guo X., Chen Z. Design of Nanoparticle-Based Carriers for Targeted Drug Delivery. J. Nanomater. 2016;2016:1–15. doi: 10.1155/2016/1087250.
    1. Yu X., Pishko M.V. Nanoparticle-based biocompatible and targeted drug delivery: Characterization and in vitro studies. Biomacromolecules. 2011;12:3205–3212. doi: 10.1021/bm200681m.
    1. Jain S., Heeralal B., Swami R., Swarnakar N.K., Kushwah V. Improved oral bioavailability, therapeutic efficacy, and reduced toxicity of tamoxifen-loaded liquid crystalline nanoparticles. AAPS PharmSciTech. 2018;19:460–469. doi: 10.1208/s12249-017-0851-9.
    1. Jain S., Spandana G., Agrawal A.K., Kushwah V., Thanki K. Enhanced Antitumor Efficacy and Reduced Toxicity of Docetaxel Loaded Estradiol Functionalized Stealth Polymeric Nanoparticles. Mol. Pharm. 2015;12:3871–3884. doi: 10.1021/acs.molpharmaceut.5b00281.
    1. Jahangirian H., Lemraski E.G., Webster T.J., Rafiee-Moghaddam R., Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. Int. J. Nanomed. 2017;12:2957–2978. doi: 10.2147/IJN.S127683.
    1. Banik B.L., Fattahi P., Brown J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016;8:271–299. doi: 10.1002/wnan.1364.
    1. Zhang L., Wang T., Li Q., Huang J., Xu H., Li J., Wang Y., Liang Q. Fabrication of novel vesicles of triptolide for antirheumatoid activity with reduced toxicity in vitro and in vivo. Int. J. Nanomed. 2016;11:2663–2673.
    1. Zhang L., Chang J., Zhao Y., Xu H., Wang T., Li Q., Xing L., Huang J., Wang Y., Liang Q. Fabrication of a triptolide-loaded and poly-γ-glutamic acid-based amphiphilic nanoparticle for the treatment of rheumatoid arthritis. Int. J. Nanomed. 2018;13:2051–2064. doi: 10.2147/IJN.S151233.
    1. Sercombe L., Veerati T., Moheimani F., Wu S.Y., Sood A.K., Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286.
    1. Allen T.M., Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013;65:36–48. doi: 10.1016/j.addr.2012.09.037.
    1. Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013;8:102. doi: 10.1186/1556-276X-8-102.
    1. Chen G., Hao B., Ju D., Liu M., Zhao H., Du Z., Xia J. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharm. Sin. B. 2015;5:569–576. doi: 10.1016/j.apsb.2015.09.006.
    1. Yang Y.H., Rajaiah R., Ruoslahti E., Moudgil K.D. Peptides targeting inflamed synovial vasculature attenuate autoimmune arthritis. Proc. Natl. Acad. Sci. USA. 2011;108:12857–12862. doi: 10.1073/pnas.1103569108.
    1. Meka R., Venkatesha S., Moudgil K.D. Peptide-directed liposomal delivery improves the therapeutic index of an immunomodulatory cytokine in controlling autoimmune arthritis. J. Control. Release. 2018;286:279–288. doi: 10.1016/j.jconrel.2018.08.007.
    1. Singh Y., Meher J.G., Raval K., Khan F.A., Chaurasia M., Jain N.K., Chourasia M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release. 2017;252:28–49. doi: 10.1016/j.jconrel.2017.03.008.
    1. Vadlapudi A.D., Mitra A.K. Nanomicelles: An emerging platform for drug delivery to the eye. Ther. Deliv. 2013;4:1–3. doi: 10.4155/tde.12.122.
    1. Trivedi R., Kompella U.B. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine. 2010;5:485–505. doi: 10.2217/nnm.10.10.
    1. Fan Z., Li J., Liu J., Jiao H., Liu B. Anti-inflammation and joint lubrication dual effects of a novel hyaluronic acid/curcumin nanomicelle improve the efficacy of rheumatoid arthritis therapy. ACS Appl. Mater. Interfaces. 2018 doi: 10.1021/acsami.8b06236.
    1. Venturini C.G., Jäger E., Oliveira C.P., Bernardi A., Battastini A.M., Guterres S.S., Pohlmann A.R. Formulation of lipid core nanocapsules. Colloids Surf. A Physicochem. Eng. Asp. 2011;375:200–208. doi: 10.1016/j.colsurfa.2010.12.011.
    1. Frank L.A., Contri R.V., Beck R.C., Pohlmann A.R., Guterres S.S. Improving drug biological effects by encapsulation into polymeric nanocapsules. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015;7:623–639. doi: 10.1002/wnan.1334.
    1. Holmes E., Li J.V., Athanasiou T., Ashrafian H., Nicholson J.K. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol. 2011;19:349–359. doi: 10.1016/j.tim.2011.05.006.
    1. Huang X., Fang S., Yang H., Gao J., He M., Ke S., Zhao Y., Chen C., Huang L. Evaluating the contribution of gut microbiome to the variance of porcine serum glucose and lipid concentration. Sci. Rep. 2017;7:14928. doi: 10.1038/s41598-017-15044-x.
    1. Riedl R.A., Atkinson S.N., Burnett C.M.L., Grobe J.L., Kirby J.R. The Gut Microbiome, Energy Homeostasis, and Implications for Hypertension. Curr. Hypertens. Rep. 2017;19:27. doi: 10.1007/s11906-017-0721-6.
    1. Chen J., Wright K., Davis J.M., Jeraldo P., Marietta E.V., Murray J., Nelson H., Matteson E.L., Taneja V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8:43. doi: 10.1186/s13073-016-0299-7.
    1. Zhang X., Zhang D., Jia H., Feng Q., Wang D., Liang D., Wu X., Li J., Tang L., Li Y., et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 2015;21:895–905. doi: 10.1038/nm.3914.
    1. Haase S., Haghikia A., Wilck N., Muller D.N., Linker R.A. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 2018;154:230–238. doi: 10.1111/imm.12933.
    1. Mizuno M., Noto D., Kaga N., Chiba A., Miyake S. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS ONE. 2017;12:e0173032. doi: 10.1371/journal.pone.0173032.
    1. Lucas S., Omata Y., Hofmann J., Bottcher M., Iljazovic A., Sarter K., Albrecht O., Schulz O., Krishnacoumar B., Kronke G., et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat. Commun. 2018;9:55. doi: 10.1038/s41467-017-02490-4.
    1. Dong L., Xia S., Gao F., Zhang D., Chen J., Zhang J. 3,3′-Diindolylmethane attenuates experimental arthritis and osteoclastogenesis. Biochem. Pharmacol. 2010;79:715–721. doi: 10.1016/j.bcp.2009.10.010.

Source: PubMed

3
Abonnieren