Pharmacological Effects and Underlying Mechanisms of Licorice-Derived Flavonoids

Yufan Wu, Zhuxian Wang, Qunqun Du, Zhaoming Zhu, Tingting Chen, Yaqi Xue, Yuan Wang, Quanfu Zeng, Chunyan Shen, Cuiping Jiang, Li Liu, Hongxia Zhu, Qiang Liu, Yufan Wu, Zhuxian Wang, Qunqun Du, Zhaoming Zhu, Tingting Chen, Yaqi Xue, Yuan Wang, Quanfu Zeng, Chunyan Shen, Cuiping Jiang, Li Liu, Hongxia Zhu, Qiang Liu

Abstract

Glycyrrhizae Radix et Rhizoma is the most frequently prescribed natural medicine in China and has been used for more than 2,000 years. The flavonoids of licorice have garnered considerable attention in recent decades due to their structural diversity and myriad pharmacological effects, especially as novel therapeutic agents against inflammation and cancer. Although many articles have been published to summarize different pharmacological activities of licorice in recent years, the systematic summary for flavonoid components is not comprehensive. Therefore, in this review, we summarized the pharmacological and mechanistic data from recent researches on licorice flavonoids and their bioactive components.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Copyright © 2022 Yufan Wu et al.

Figures

Figure 1
Figure 1
Pharmacological activities of licorice flavonoids.
Figure 2
Figure 2
(a) Flavanone, flavone, flavonol, and chalcone structure from licorice. (b) Isoflavone, isoflavanone, isoflavan, and isoflavene structure from licorice.
Figure 3
Figure 3
The main signaling pathway of anti-inflammation of licorice flavonoids.
Figure 4
Figure 4
The main antitumor signaling pathway of licorice flavonoids.

References

    1. Zhao Y., Lv B., Feng X., Li C. Perspective on biotransformation and de novo biosynthesis of licorice constituents. Journal of Agricultural and Food Chemistry . 2017;65(51):11147–11156. doi: 10.1021/acs.jafc.7b04470.
    1. Cheng M. Z., Zhang J. Q., Yang L., et al. Recent advances in chemical analysis of licorice (Gan-Cao) Fitoterapia . 2020;149104803
    1. Kao T.-C., Wu C.-H., Yen G.-C. Bioactivity and potential health benefits of licorice. Journal of Agricultural and Food Chemistry . 2014;62(3):542–553. doi: 10.1021/jf404939f.
    1. Harding V., Stebbing J. Liquorice: a treatment for all sorts? The Lancet Oncology . 2017;18(9):p. 1155. doi: 10.1016/s1470-2045(17)30628-9.
    1. Wang Z., Zhao X., Zu Y., et al. Licorice flavonoids nanoparticles prepared by liquid antisolvent re-crystallization exhibit higher oral bioavailability and antioxidant activity in rat. Journal of Functional Foods . 2019;57:190–201. doi: 10.1016/j.jff.2019.04.010.
    1. Wang L., Yang R., Yuan B., Liu Y., Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharmaceutica Sinica B . 2015;5(4):310–315. doi: 10.1016/j.apsb.2015.05.005.
    1. Yang F., Chu T., Zhang Y., Liu X., Sun G., Chen Z. Quality assessment of licorice (Glycyrrhiza glabra L.) from different sources by multiple fingerprint profiles combined with quantitative analysis, antioxidant activity and chemometric methods. Food Chemistry . 2020;324 doi: 10.1016/j.foodchem.2020.126854.126854
    1. Wang C., Chen L., Xu C., et al. A comprehensive review for phytochemical, pharmacological, and biosynthesis studies on Glycyrrhiza spp. The American journal of Chinese medicine . 2020;48(1):17–45. doi: 10.1142/S0192415X20500020.
    1. Bai L., Li X., He L., et al. Antidiabetic potential of flavonoids from traditional Chinese medicine: a review. The American Journal of Chinese Medicine . 2019;47(5):933–957. doi: 10.1142/s0192415x19500496.
    1. Badshah S. L., Faisal S., Muhammad A., Poulson B. G., Emwas A. H., Jaremko M. Antiviral activities of flavonoids. Biomedicine & Pharmacotherapy . 2021;140 doi: 10.1016/j.biopha.2021.111596.111596
    1. Guo Z., Niu X., Xiao T., Lu J., Li W., Zhao Y. Chemical profile and inhibition of α-glycosidase and protein tyrosine phosphatase 1B (PTP1B) activities by flavonoids from licorice (Glycyrrhiza uralensis Fisch) Journal of Functional Foods . 2015;14:324–336. doi: 10.1016/j.jff.2014.12.003.
    1. Hou X., Yang S., Zheng Y. Licochalcone A attenuates abdominal aortic aneurysm induced by angiotensin II via regulating the miR‐181b/SIRT1/HO‐1 signaling. Journal of Cellular Physiology . 2019;234(5):7560–7568. doi: 10.1002/jcp.27517.
    1. Oh H.-N., Lee M.-H., Kim E., Yoon G., Chae J.-I., Shim J.-H. Licochalcone B inhibits growth and induces apoptosis of human non-small-cell lung cancer cells by dual targeting of EGFR and MET. Phytomedicine . 2019;63 doi: 10.1016/j.phymed.2019.153014.153014
    1. Chirumbolo S. Commentary: the antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Frontiers in Microbiology . 2016;7:p. 531. doi: 10.3389/fmicb.2016.00531.
    1. Ahmad N., Badshah S. L., Junaid M., Ur Rehman A., Muhammad A., Khan K. Structural insights into the zika virus NS1 protein inhibition using a computational approach. Journal of Biomolecular Structure and Dynamics . 2021;39(8):3004–3011. doi: 10.1080/07391102.2020.1759453.
    1. Shahid F., Noreen, Ali R., et al. Identification of potential HCV inhibitors based on the interaction of epigallocatechin-3-gallate with viral envelope proteins. Molecules (Basel, Switzerland) . 2021;26(5):p. 1257. doi: 10.3390/molecules26051257.
    1. Yang Y., Wang S., Bao Y.-r., et al. Anti-ulcer effect and potential mechanism of licoflavone by regulating inflammation mediators and amino acid metabolism. Journal of Ethnopharmacology . 2017;199:175–182. doi: 10.1016/j.jep.2017.01.053.
    1. Kim J.-K., Shin E. K., Park J. H., Kim Y. H., Park J. H. Y. Antitumor and antimetastatic effects of licochalcone a in mouse models. Journal of Molecular Medicine . 2010;88(8):829–838. doi: 10.1007/s00109-010-0625-2.
    1. Ahmed S. M. U., Luo L., Namani A., Wang X. J., Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease . 2017;1863(2):585–597. doi: 10.1016/j.bbadis.2016.11.005.
    1. Dinarello C. A. Anti-inflammatory agents: present and future. Cell . 2010;140(6):935–950. doi: 10.1016/j.cell.2010.02.043.
    1. Dinarello C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood . 2011;117(14):3720–3732. doi: 10.1182/blood-2010-07-273417.
    1. Kongkatitham V., Muangnoi C., Kyokong N., et al. Anti-oxidant and anti-inflammatory effects of new bibenzyl derivatives from Dendrobium parishii in hydrogen peroxide and lipopolysaccharide treated RAW264.7 cells. Phytochemistry Letters . 2018;24:31–38. doi: 10.1016/j.phytol.2018.01.006.
    1. Kumar A., Takada Y., Boriek A. M., Aggarwal B. B. Nuclear factor-κB: its role in health and disease. Journal of Molecular Medicine . 2004;82:434–448. doi: 10.1007/s00109-004-0555-y.
    1. Lawrence T. The nuclear factor NF- κB pathway in inflammation. Cold Spring Harbor Perspectives in Biology . 2009;1(6) doi: 10.1101/cshperspect.a001651.a1651
    1. Gao Q., Liang X., Shaikh A. S., Zang J., Xu W., Zhang Y. JAK/STAT signal transduction: promising attractive targets for immune, inflammatory and hematopoietic diseases. Current Drug Targets . 2018;19(5):487–500. doi: 10.2174/1389450117666161207163054.
    1. Mohan S., Gupta D. Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomedicine & Pharmacotherapy . 2018;108:1866–1878. doi: 10.1016/j.biopha.2018.10.019.
    1. Muhammad A., Khan B., Iqbal Z., et al. Viscosine as a potent and safe antipyretic agent evaluated by yeast-induced pyrexia model and molecular docking studies. ACS Omega . 2019;4(10):14188–14192. doi: 10.1021/acsomega.9b01041.
    1. Yinghe D., Xiaoqin L., Juan Z., Wei Y., Jingquan Y. Research progress of anti-inflammatory effect and mechanism of licorice flavonoid. Jiangxi Journal of Traditional Chinese Medicine . 2017;48(2):68–71.
    1. Yin L., Guan E., Zhang Y., et al. Chemical profile and anti-inflammatory activity of total flavonoids from Glycyrrhiza uralensis Fisch. Iranian Journal of Pharmaceutical Research . 2018;17(2):726–734.
    1. Xie Y.-C., Dong X.-W., Wu X.-M., Yan X.-F., Xie Q.-M. Inhibitory effects of flavonoids extracted from licorice on lipopolysaccharide-induced acute pulmonary inflammation in mice. International Immunopharmacology . 2009;9(2):194–200. doi: 10.1016/j.intimp.2008.11.004.
    1. Yang R., Yuan B.-C., Ma Y.-S., Zhou S., Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharmaceutical Biology . 2017;55(1):5–18. doi: 10.1080/13880209.2016.1225775.
    1. Fu Y., Chen J., Li Y.-J., Zheng Y.-F., Li P. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chemistry . 2013;141(2):1063–1071. doi: 10.1016/j.foodchem.2013.03.089.
    1. Honda H., Nagai Y., Matsunaga T., et al. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet‐induced adipose tissue inflammation. Journal of Leukocyte Biology . 2014;96(6):1087–1100. doi: 10.1189/jlb.3a0114-005rr.
    1. Yehuda I., Madar Z., Leikin-Frenkel A., Tamir S. Glabridin, an isoflavan from licorice root, downregulates iNOS expression and activity under high-glucose stress and inflammation. Molecular Nutrition & Food Research . 2015;59(6):1041–1052. doi: 10.1002/mnfr.201400876.
    1. Chu X., Ci X., Wei M., et al. Licochalcone a inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo. Journal of Agricultural and Food Chemistry . 2012;60(15):3947–3954. doi: 10.1021/jf2051587.
    1. Furuhashi I., Iwata S., Shibata S., Sato T., Inoue H. Inhibition by licochalcone A, a novel flavonoid isolated from liquorice root, of IL-1b-induced PGE2 production in human skin fibroblasts. Pharmacy and Pharmacology . 2005;57:1661–1666.
    1. Jia T., Qiao J., Guan D., Chen T. Anti-inflammatory effects of licochalcone A on IL-1β-stimulated human osteoarthritis chondrocytes. Inflammation . 2017;40(6):1894–1902. doi: 10.1007/s10753-017-0630-5.
    1. Franceschelli S., Pesce M., Vinciguerra I., et al. Licocalchone-C extracted from Glycyrrhiza glabra inhibits lipopolysaccharide-interferon-γ inflammation by improving antioxidant conditions and regulating inducible nitric oxide synthase expression. Molecules . 2011;16(7):5720–5734. doi: 10.3390/molecules16075720.
    1. Thiyagarajan P., Chandrasekaran C. V., Deepak H. B., Agarwal A. Modulation of lipopolysaccharide-induced pro-inflammatory mediators by an extract of Glycyrrhiza glabra and its phytoconstituents. Inflammopharmacology . 2011;19(4):235–241. doi: 10.1007/s10787-011-0080-x.
    1. Yu H., Li H., Li Y., Li M., Chen G. Effect of isoliquiritigenin for the treatment of atopic dermatitis-like skin lesions in mice. Archives of Dermatological Research . 2017;309(10):805–813. doi: 10.1007/s00403-017-1787-3.
    1. Li P., Li Y., Jiang H., et al. Glabridin, an isoflavan from licorice root, ameliorates imiquimod-induced psoriasis-like inflammation of BALB/c mice. International Immunopharmacology . 2018;59:243–251. doi: 10.1016/j.intimp.2018.04.018.
    1. Choi E.-M. The licorice root derived isoflavan glabridin increases the function of osteoblastic mc3t3-E1 cells. Biochemical Pharmacology . 2005;70(3):363–368. doi: 10.1016/j.bcp.2005.04.019.
    1. Yu J.-Y., Ha J., Kim K.-M., Jung Y.-S., Jung J.-C., Oh S. Anti-inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules . 2015;20(7):13041–13054. doi: 10.3390/molecules200713041.
    1. Tu C., Ma Y., Song M., Yan J., Xiao Y., Wu H. Liquiritigenin inhibits IL-1β-induced inflammation and cartilage matrix degradation in rat chondrocytes. European Journal of Pharmacology . 2019;858 doi: 10.1016/j.ejphar.2019.172445.172445
    1. La V. D., Tanabe S.-i., Bergeron C., Gafner S., Grenier D. Modulation of matrix metalloproteinase and cytokine production by licorice isolates licoricidin and licorisoflavan a: potential therapeutic approach for periodontitis. Journal of Periodontology . 2011;82(1):122–128. doi: 10.1902/jop.2010.100342.
    1. Huo X., Liu D., Gao L., Li L., Cao L. Flavonoids extracted from licorice prevents colitis-associated carcinogenesis in AOM/DSS mouse model. International Journal of Molecular Sciences . 2016;17(9) doi: 10.3390/ijms17091343.
    1. Wei M., Ma Y., Liu Y., et al. Urinary metabolomics study on the anti-inflammation effects of flavonoids obtained from Glycyrrhiza. Journal of Chromatography B . 2018;1086:1–10. doi: 10.1016/j.jchromb.2018.04.007.
    1. Hu J., Liu J. Licochalcone A attenuates lipopolysaccharide-induced acute kidney injury by inhibiting NF-κB activation. Inflammation . 2016;39(2):569–574. doi: 10.1007/s10753-015-0281-3.
    1. Chu X., Jiang L., Wei M., et al. Attenuation of allergic airway inflammation in a murine model of asthma by licochalcone a. Immunopharmacology and Immunotoxicology . 2013;35(6):653–661. doi: 10.3109/08923973.2013.834929.
    1. Zhang W., Wang G., Zhou S. Protective effects of isoliquiritigenin on LPS-induced acute lung injury by activating PPAR-γ. Inflammation . 2018;41(4):1290–1296. doi: 10.1007/s10753-018-0777-8.
    1. Zhu X., Liu J., Huang S., et al. Neuroprotective effects of isoliquiritigenin against cognitive impairment via suppression of synaptic dysfunction, neuronal injury, and neuroinflammation in rats with kainic acid-induced seizures. International Immunopharmacology . 2019;72:358–366. doi: 10.1016/j.intimp.2019.04.028.
    1. Nakamura S., Watanabe T., Tanigawa T., et al. Isoliquiritigenin ameliorates indomethacin-induced small intestinal damage by inhibiting NOD-like receptor family, pyrin domain-containing 3 inflammasome activation. Pharmacology . 2018;101(5-6):236–245. doi: 10.1159/000486599.
    1. El-Ashmawy N. E., Khedr N. F., El-Bahrawy H. A., El-Adawy S. A. Downregulation of iNOS and elevation of cAMP mediate the anti-inflammatory effect of glabridin in rats with ulcerative colitis. Inflammopharmacology . 2018;26(2):551–559. doi: 10.1007/s10787-017-0373-9.
    1. Kwon H.-S., Park J. H., Kim D. H., et al. Licochalcone a isolated from licorice suppresses lipopolysaccharide-stimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice. Journal of Molecular Medicine . 2008;86(11):1287–1295. doi: 10.1007/s00109-008-0395-2.
    1. Vane J. R., Botting R. M. New insights into the mode of action of anti-inflammatory drugs. Inflammation Research . 1995;44(1):1–10. doi: 10.1007/bf01630479.
    1. Tak P. P., Firestein G. S. NF-κB: a key role in inflammatory diseases. Journal of Clinical Investigation . 2001;107(1):7–11. doi: 10.1172/jci11830.
    1. Wu Y., Chen X., Ge X., et al. Isoliquiritigenin prevents the progression of psoriasis-like symptoms by inhibiting NF-κB and proinflammatory cytokines. Journal of Molecular Medicine . 2016;94(2):195–206. doi: 10.1007/s00109-015-1338-3.
    1. Liao Y., Tan R.-z., Li J.-c., et al. Isoliquiritigenin attenuates UUO-induced renal inflammation and fibrosis by inhibiting mincle/syk/NF-kappa B signaling pathway. Drug Design, Development and Therapy . 2020;14:1455–1468. doi: 10.2147/dddt.s243420.
    1. Kim J.-Y., Park S. J., Yun K.-J., Cho Y.-W., Park H.-J., Lee K.-T. Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-κB in RAW 264.7 macrophages. European Journal of Pharmacology . 2008;584(1):175–184. doi: 10.1016/j.ejphar.2008.01.032.
    1. Furusawa J.-i., Funakoshi-Tago M., Mashino T., et al. Glycyrrhiza inflata-derived chalcones, Licochalcone A, Licochalcone B and Licochalcone D, inhibit phosphorylation of NF-κB p65 in LPS signaling pathway. International Immunopharmacology . 2009;9(4):499–507. doi: 10.1016/j.intimp.2009.01.031.
    1. Franceschelli S., Pesce M., Ferrone A., et al. Biological effect of licochalcone C on the regulation of PI3K/Akt/eNOS and NF-κB/iNOS/NO signaling pathways in H9c2 cells in response to LPS stimulation. International Journal of Molecular Sciences . 2017;18(4):p. 690. doi: 10.3390/ijms18040690.
    1. Cho Y.-C., Lee S. H., Yoon G., et al. Licochalcone E reduces chronic allergic contact dermatitis and inhibits IL-12p40 production through down-regulation of NF-κB. International Immunopharmacology . 2010;10(9):1119–1126. doi: 10.1016/j.intimp.2010.06.015.
    1. Su X., Li T., Liu Z., et al. Licochalcone A activates Keap1-Nrf2 signaling to suppress arthritis via phosphorylation of p62 at serine 349. Free Radical Biology and Medicine . 2018;115:471–483. doi: 10.1016/j.freeradbiomed.2017.12.004.
    1. Yu D., Liu X., Zhang G., Ming Z., Wang T. Isoliquiritigenin inhibits cigarette smoke-induced COPD by attenuating inflammation and oxidative stress via the regulation of the Nrf2 and NF-κB signaling pathways. Frontiers in Pharmacology . 2018;9:p. 1001. doi: 10.3389/fphar.2018.01001.
    1. Gao Y., Lv X., Yang H., Peng L., Ci X. Isoliquiritigenin exerts antioxidative and anti-inflammatory effects via activating the KEAP-1/Nrf2 pathway and inhibiting the NF-κB and NLRP3 pathways in carrageenan-induced pleurisy. Food & Function . 2020;11(3):2522–2534. doi: 10.1039/c9fo01984g.
    1. Wang R., Zhang C. Y., Bai L. P., et al. Flavonoids derived from liquorice suppress murine macrophage activation by up-regulating heme oxygenase-1 independent of Nrf2 activation. International Immunopharmacology . 2015;28(2):917–924. doi: 10.1016/j.intimp.2015.03.040.
    1. Choi Y. H., Bae J.-K., Chae H.-S., et al. Isoliquiritigenin ameliorates dextran sulfate sodium-induced colitis through the inhibition of MAPK pathway. International Immunopharmacology . 2016;31:223–232. doi: 10.1016/j.intimp.2015.12.024.
    1. Zhai K.-f., Duan H., Cui C.-y., et al. Liquiritin from Glycyrrhiza uralensis attenuating rheumatoid arthritis via reducing inflammation, suppressing angiogenesis, and inhibiting MAPK signaling pathway. Journal of Agricultural and Food Chemistry . 2019;67(10):2856–2864. doi: 10.1021/acs.jafc.9b00185.
    1. Zhu X., Liu J., Chen O., et al. Neuroprotective and anti-inflammatory effects of isoliquiritigenin in kainic acid-induced epileptic rats via the TLR4/MYD88 signaling pathway. Inflammopharmacology . 2019;27(6):1143–1153. doi: 10.1007/s10787-019-00592-7.
    1. Zhu L., Wei H., Wu Y., et al. Licorice isoliquiritigenin suppresses RANKL-induced osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo. The International Journal of Biochemistry & Cell Biology . 2012;44(7):1139–1152. doi: 10.1016/j.biocel.2012.04.003.
    1. Yang G., Lee H. E., Yeon S. H., et al. Licochalcone a attenuates acne symptoms mediated by suppression of NLRP3 inflammasome. Phytotherapy Research . 2018;32(12):2551–2559. doi: 10.1002/ptr.6195.
    1. Jiang Y. X., Dai Y. Y., Pan Y. F., et al. Total flavonoids from Radix Glycyrrhiza exert anti-inflammatory and antitumorigenic effects by inactivating iNOS signaling pathways. Evidence-based Complementary and Alternative Medicine . 2018;2018:10. doi: 10.1155/2018/6714282.6714282
    1. Hausman D. M. What is Cancer? Perspectives in Biology and Medicine . 2019;62(4):778–784. doi: 10.1353/pbm.2019.0046.
    1. Chen X., Liu Z., Meng R., Shi C., Guo N. Antioxidative and anticancer properties of licochalcone a from licorice. Journal of Ethnopharmacology . 2017;198:331–337. doi: 10.1016/j.jep.2017.01.028.
    1. Takahashi T., Takasuka N., Iigo M., et al. Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Science . 2004;95(5):448–453. doi: 10.1111/j.1349-7006.2004.tb03230.x.
    1. Hsieh M.-J., Chen M.-K., Chen C.-J., et al. Glabridin induces apoptosis and autophagy through JNK1/2 pathway in human hepatoma cells. Phytomedicine . 2016;23(4):359–366. doi: 10.1016/j.phymed.2016.01.005.
    1. Nho S. H., Yoon G., Seo J. H., et al. Licochalcone H induces the apoptosis of human oral squamous cell carcinoma cells via regulation of matrin 3. Oncology Reports . 2019;41(1):333–340. doi: 10.3892/or.2018.6784.
    1. Huang Y., Liu C., Zeng W. C., et al. Isoliquiritigenin inhibits the proliferation, migration and metastasis of Hep3B cells via suppressing cyclin D1 and PI3K/AKT pathway. Bioscience Reports . 2020;40(1) doi: 10.1042/BSR20192727.
    1. Hsieh M.-J., Lin C.-W., Yang S.-F., Chen M.-K., Chiou H.-L. Glabridin inhibits migration and invasion by transcriptional inhibition of matrix metalloproteinase 9 through modulation of NF-κB and AP-1 activity in human liver cancer cells. British Journal of Pharmacology . 2014;171(12):3037–3050. doi: 10.1111/bph.12626.
    1. Wang J., Zhang Y.-S., Thakur K., et al. Licochalcone a from licorice root, an inhibitor of human hepatoma cell growth via induction of cell apoptosis and cell cycle arrest. Food and Chemical Toxicology . 2018;120:407–417. doi: 10.1016/j.fct.2018.07.044.
    1. Wang J., Liao A.-M., Thakur K., Zhang J.-G., Huang J.-H., Wei Z.-J. Licochalcone B extracted from Glycyrrhiza uralensis Fisch induces apoptotic effects in human hepatoma cell HepG2. Journal of Agricultural and Food Chemistry . 2019;67(12):3341–3353. doi: 10.1021/acs.jafc.9b00324.
    1. Wang J. R., Luo Y. H., Piao X. J., et al. Mechanisms underlying isoliquiritigenin‐induced apoptosis and cell cycle arrest via ROS‐mediated MAPK/STAT3/NF‐κB pathways in human hepatocellular carcinoma cells. Drug Development Research . 2019;80(4):461–470. doi: 10.1002/ddr.21518.
    1. Wang D., Lu J. H., Liu Y., et al. Liquiritigenin induces tumor cell death through mitogen-activated protein kinase- (MPAKs-) mediated pathway in hepatocellular carcinoma cells. BioMed Research International . 2014;2014:11. doi: 10.1155/2014/965316.965316
    1. Zhou Y., Ho W. S. Combination of liquiritin, isoliquiritin and isoliquirigenin induce apoptotic cell death through upregulating P53 and P21 in the A549 non-small cell lung cancer cells. Oncology Reports . 2014;31(1):298–304. doi: 10.3892/or.2013.2849.
    1. Tang Z. H., Chen X., Wang Z. Y., et al. Induction of C/EBP homologous protein-mediated apoptosis and autophagy by licochalcone a in non-small cell lung cancer cells. Scientific Reports . 2016;6(1) doi: 10.1038/srep26241.
    1. Qiu C., Zhang T., Zhang W., et al. Licochalcone a inhibits the proliferation of human lung cancer cell lines A549 and H460 by inducing G2/M cell cycle arrest and ER stress. International Journal of Molecular Sciences . 2017;18(8):p. 1761. doi: 10.3390/ijms18081761.
    1. Oh H. N., Lee M. H., Kim E., et al. Licochalcone D induces ROS-dependent apoptosis in gefitinib-sensitive or resistant lung cancer cells by targeting EGFR and MET. Biomolecules . 2020;10(2):p. 297. doi: 10.3390/biom10020297.
    1. Tsai Y.-M., Yang C.-J., Hsu Y.-L., et al. Glabridin inhibits migration, invasion, and angiogenesis of human non-small cell lung cancer A549 cells by inhibiting the FAK/rho signaling pathway. Integrative Cancer Therapies . 2017;10(4):341–349. doi: 10.1177/1534735410384860.
    1. Oh H. N., Lee M. H., Kim E., et al. Dual inhibition of EGFR and MET by echinatin retards cell growth and induces apoptosis of lung cancer cells sensitive or resistant to gefitinib. Phytotherapy Research . 2020;34(2):388–400. doi: 10.1002/ptr.6530.
    1. Xiao X.-y., Hao M., Yang X.-y., et al. Licochalcone a inhibits growth of gastric cancer cells by arresting cell cycle progression and inducing apoptosis. Cancer Letters . 2011;302(1):69–75. doi: 10.1016/j.canlet.2010.12.016.
    1. Wei F., Jiang X., Gao H.-Y., Gao S.-H. Liquiritin induces apoptosis and autophagy in cisplatin (DDP)-resistant gastric cancer cells in vitro and xenograft nude mice in vivo. International Journal of Oncology . 2017;51(5):1383–1394. doi: 10.3892/ijo.2017.4134.
    1. Zhang X. R., Wang S. Y., Sun W., Wei C. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Molecular Medicine Reports . 2018;18(3):3429–3436. doi: 10.3892/mmr.2018.9318.
    1. Lee N., Kim D. Cancer metabolism: fueling more than just growth. Molecules and Cells . 2016;39(12):847–854. doi: 10.14348/molcells.2016.0310.
    1. Doherty J. R., Cleveland J. L. Targeting lactate metabolism for cancer therapeutics. Journal of Clinical Investigation . 2013;123(9):3685–3692. doi: 10.1172/jci69741.
    1. Wu J., Zhang X., Wang Y., et al. Licochalcone a suppresses hexokinase 2-mediated tumor glycolysis in gastric cancer via downregulation of the Akt signaling pathway. Oncology Reports . 2018;39(3):1181–1190. doi: 10.3892/or.2017.6155.
    1. Hao W., Yuan X., Yu L., et al. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Scientific Reports . 2015;5(1) doi: 10.1038/srep10336.10336
    1. Xie R., Gao C.-c., Yang X.-z., et al. Combining TRAIL and liquiritin exerts synergistic effects against human gastric cancer cells and xenograft in nude mice through potentiating apoptosis and ROS generation. Biomedicine & Pharmacotherapy . 2017;93:948–960. doi: 10.1016/j.biopha.2017.06.095.
    1. White D. E., Muller W. J. Multifaceted roles of integrins in breast cancer metastasis. Journal of Mammary Gland Biology and Neoplasia . 2007;12(2-3):135–142. doi: 10.1007/s10911-007-9045-5.
    1. Ye L., Gho W. M., Chan F. L., Chen S., Leung L. K. Dietary administration of the licorice flavonoid isoliquiritigenin deters the growth of MCF-7 cells overexpressing aromatase. International Journal of Cancer . 2009;124(5):1028–1036. doi: 10.1002/ijc.24046.
    1. Kang T. H., Seo J. H., Oh H., Yoon G., Chae J. I., Shim J. H. Licochalcone a suppresses specificity protein 1 as a novel target in human breast cancer cells. Journal of Cellular Biochemistry . 2017;118(12):4652–4663. doi: 10.1002/jcb.26131.
    1. Kwon S. J., Park S. Y., Kwon G. T., et al. Licochalcone E present in licorice suppresses lung metastasis in the 4T1 mammary orthotopic cancer model. Cancer Prevention Research . 2013;6(6):603–613. doi: 10.1158/1940-6207.capr-13-0012.
    1. Li Y., Zhao H., Wang Y., et al. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer. Toxicology and Applied Pharmacology . 2013;272(1):37–48. doi: 10.1016/j.taap.2013.05.031.
    1. Wang K.-L., Hsia S.-M., Chan C.-J., et al. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opinion on Therapeutic Targets . 2013;17(4):337–349. doi: 10.1517/14728222.2013.756869.
    1. Jiang F., Li Y., Mu J., et al. Glabridin inhibits cancer stem cell-like properties of human breast cancer cells: an epigenetic regulation of miR-148a/SMAd2 signaling. Molecular Carcinogenesis . 2016;55(5):929–940. doi: 10.1002/mc.22333.
    1. Huang W.-C., Su H.-H., Fang L.-W., Wu S.-J., Liou C.-J. Licochalcone a inhibits cellular motility by suppressing E-cadherin and MAPK signaling in breast cancer. Cells . 2019;8(3):p. 218. doi: 10.3390/cells8030218.
    1. Kwak A.-W., Choi J.-S., Lee M.-H., et al. Retrochalcone echinatin triggers apoptosis of esophageal squamous cell carcinoma via ROS- and ER stress-mediated signaling pathways. Molecules . 2019;24(22):p. 4055. doi: 10.3390/molecules24224055.
    1. Oh H. N., Seo J. H., Lee M. H., et al. Licochalcone C induced apoptosis in human oral squamous cell carcinoma cells by regulation of the JAK2/STAT3 signaling pathway. Journal of Cellular Biochemistry . 2018;119(12):10118–10130. doi: 10.1002/jcb.27349.
    1. Zhang X., Yeung E. D., Wang J., et al. Isoliquiritigenin, a natural anti-oxidant, selectively inhibits the proliferation of prostate cancer cells. Clinical and Experimental Pharmacology and Physiology . 2010;37(8):841–847. doi: 10.1111/j.1440-1681.2010.05395.x.
    1. Yuan X., Li D., Zhao H., et al. Licochalcone A-induced human bladder cancer T24 cells apoptosis triggered by mitochondria dysfunction and endoplasmic reticulum stress. BioMed Research International . 2013;2013:9. doi: 10.1155/2013/474272.474272
    1. Chen H. Y., Huang T. C., Shieh T. M., Wu C. H., Lin L. C., Hsia S. M. Isoliquiritigenin induces autophagy and inhibits ovarian cancer cell growth. International Journal of Molecular Sciences . 2017;18(10) doi: 10.3390/ijms18102025.
    1. He S.-h., Liu H.-g., Zhou Y.-f., Yue Q.-f. Liquiritin (LT) exhibits suppressive effects against the growth of human cervical cancer cells through activating caspase-3 in vitro and xenograft mice in vivo. Biomedicine & Pharmacotherapy . 2017;92:215–228. doi: 10.1016/j.biopha.2017.05.026.
    1. Lin Y., Sun H., Dang Y., Li Z. Isoliquiritigenin inhibits the proliferation and induces the differentiation of human glioma stem cells. Oncology Reports . 2018;39(2):687–694. doi: 10.3892/or.2017.6154.
    1. Xiang S., Chen H., Luo X., et al. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. Journal of Experimental & Clinical Cancer Research: Climate Research . 2018;37(1):p. 184. doi: 10.1186/s13046-018-0844-x.
    1. Lin P.-H., Kung H.-L., Chen H.-Y., Huang K.-C., Hsia S.-M. Isoliquiritigenin suppresses E2-induced uterine leiomyoma growth through the modulation of cell death program and the repression of ECM accumulation. Cancers . 2019;11(8):p. 1131. doi: 10.3390/cancers11081131.
    1. Kim K. H., Yoon G., Cho J. J., et al. Licochalcone a induces apoptosis in malignant pleural mesothelioma through downregulation of Sp1 and subsequent activation of mitochondria-related apoptotic pathway. International Journal of Oncology . 2015;46(3):1385–1392. doi: 10.3892/ijo.2015.2839.
    1. Huang W., Tang S., Qiao X., et al. Isoangustone a induces apoptosis in SW480 human colorectal adenocarcinoma cells by disrupting mitochondrial functions. Fitoterapia . 2014;94:36–47. doi: 10.1016/j.fitote.2014.01.016.
    1. Meng F.-C., Lin J.-K. Liquiritigenin inhibits colorectal cancer proliferation, invasion, and epithelial-to-mesenchymal transition by decreasing expression of runt-related transcription factor 2. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics . 2019;27(2):139–146. doi: 10.3727/096504018x15185747911701.
    1. Cho J. J., Chae J.-I., Yoon G., et al. Licochalcone a, a natural chalconoid isolated from Glycyrrhiza inflata root, induces apoptosis via Sp1 and Sp1 regulatory proteins in oral squamous cell carcinoma. International Journal of Oncology . 2014;45(2):667–674. doi: 10.3892/ijo.2014.2461.
    1. Oh H., Yoon G., Shin J.-C., et al. Licochalcone B induces apoptosis of human oral squamous cell carcinoma through the extrinsic- and intrinsic-signaling pathways. International Journal of Oncology . 2016;48(4):1749–1757. doi: 10.3892/ijo.2016.3365.
    1. Kwak A.-W., Choi J.-S., Liu K., et al. Licochalcone C induces cell cycle G1 arrest and apoptosis in human esophageal squamous carcinoma cells by activation of the ROS/MAPK signaling pathway. Journal of Chemotherapy . 2020;32(3):132–143. doi: 10.1080/1120009x.2020.1721175.
    1. Chen C.-T., Chen Y.-T., Hsieh Y.-H., et al. Glabridin induces apoptosis and cell cycle arrest in oral cancer cells through the JNK1/2 signaling pathway. Environmental Toxicology . 2018;33(6):679–685. doi: 10.1002/tox.22555.
    1. Hsia S.-M., Yu C.-C., Shih Y.-H., et al. Isoliquiritigenin as a cause of DNA damage and inhibitor of ataxia-telangiectasia mutated expression leading to G2/M phase Arrest and apoptosis in oral squamous cell carcinoma. Head & Neck . 2016;38(S1):E360–E371. doi: 10.1002/hed.24001.
    1. Yo Y.-T., Shieh G.-S., Hsu K.-F., Wu C.-L., Shiau A.-L. Licorice and licochalcone-A induce autophagy in LNCaP prostate cancer cells by suppression of bcl-2 expression and the mTOR pathway. Journal of Agricultural and Food Chemistry . 2009;57(18):8266–8273. doi: 10.1021/jf901054c.
    1. Zhang B., Lai Y., Li Y., et al. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. European Journal of Pharmacology . 2018;821:57–67. doi: 10.1016/j.ejphar.2017.12.053.
    1. Hong S. H., Cha H.-J., Hwang-Bo H., et al. Anti-proliferative and pro-apoptotic effects of licochalcone a through ROS-mediated cell cycle arrest and apoptosis in human bladder cancer cells. International Journal of Molecular Sciences . 2019;20(15):p. 3820. doi: 10.3390/ijms20153820.
    1. Chen C., Huang S., Chen C. L., Su S. B., Fang D. D. Isoliquiritigenin inhibits ovarian cancer metastasis by reversing epithelial-to-mesenchymal transition. Molecules (Basel, Switzerland) . 2019;24:20. doi: 10.3390/molecules24203725.
    1. Lu W. J., Wu G. J., Chen R. J., et al. Licochalcone A attenuates glioma cell growthin vitroandin vivothrough cell cycle arrest. Food & Function . 2018;9(8):4500–4507. doi: 10.1039/c8fo00728d.
    1. Wang Y., Ma J., Yan X., et al. Isoliquiritigenin inhibits proliferation and induces apoptosis via alleviating hypoxia and reducing glycolysis in mouse melanoma B16F10 cells. Recent Patents on Anti-cancer Drug Discovery . 2016;11(2):215–227. doi: 10.2174/1573406412666160307151904.
    1. Lin R. C., Yang S. F., Chiou H. L., et al. Licochalcone A-induced apoptosis through the activation of p38MAPK pathway mediated mitochondrial pathways of apoptosis in human osteosarcoma cells in vitro and in vivo. Cells . 2019;8:11. doi: 10.3390/cells8111441.
    1. Liu L. W., Xu R. T., Zhao M. Research progress in anti-tumor mechanism of natural medicine. Medical Recapitulate . 2015;21(10):1778–1780.
    1. Schaeffer H. J., Weber M. J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Molecular and Cellular Biology . 1999;19(4):2435–2444. doi: 10.1128/mcb.19.4.2435.
    1. Pulverer B. J., Kyriakis J. M., Avruch J., Nikolakaki E., Woodgett J. R. Phosphorylation of C-jun mediated by MAP kinases. Nature . 1991;353(6345):670–674. doi: 10.1038/353670a0.
    1. Ip Y. T., Davis R. J. Signal transduction by the c-Jun N-terminal kinase (JNK)—from inflammation to development. Current Opinion in Cell Biology . 1998;10(2):205–219. doi: 10.1016/s0955-0674(98)80143-9.
    1. Tsai J.-P., Hsiao P.-C., Yang S.-F., et al. Licochalcone A suppresses migration and invasion of human hepatocellular carcinoma cells through downregulation of MKK4/JNK via NF-κB mediated urokinase plasminogen activator expression. PLoS One . 2014;9(1) doi: 10.1371/journal.pone.0086537.e86537
    1. Guo H., German P., Bai S., et al. The PI3K/AKT pathway and renal cell carcinoma. Journal of Genetics and Genomics . 2015;42(7):343–353. doi: 10.1016/j.jgg.2015.03.003.
    1. Nozhat Z., Hedayati M. PI3K/AKT pathway and its mediators in thyroid carcinomas. Molecular Diagnosis and Therapy . 2016;20(1):13–26. doi: 10.1007/s40291-015-0175-y.
    1. Doonan F., Cotter T. G. Morphological assessment of apoptosis. Methods . 2008;44(3):200–204. doi: 10.1016/j.ymeth.2007.11.006.
    1. Lee H., Shin E. A., Lee J. H., et al. Caspase inhibitors: a review of recently patented compounds (2013–2015) Expert Opinion on Therapeutic Patents . 2018;28(1):47–59. doi: 10.1080/13543776.2017.1378426.
    1. Peña Blanco A., García Sáez A. J. Bax, Bak and beyond—mitochondrial performance in apoptosis. FEBS Journal . 2017;285(3):416–431.
    1. Ullah A., Munir S., Badshah S. L., et al. Important flavonoids and their role as a therapeutic agent. Molecules . 2020;25(22):p. 5243. doi: 10.3390/molecules25225243.
    1. Chin Y.-W., Jung H.-A., Liu Y., et al. Anti-oxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra) Journal of Agricultural and Food Chemistry . 2007;55(12):4691–4697. doi: 10.1021/jf0703553.
    1. Liu Z.-J., Zhong J., Zhang M., et al. The alexipharmic mechanisms of five licorice ingredients involved in CYP450 and Nrf2 pathways in paraquat-induced mice acute lung injury. Oxidative Medicine and Cellular Longevity . 2019;2019:20. doi: 10.1155/2019/7283104.7283104
    1. Hasani-Ranjbar S., Nayebi N., Moradi L., Mehri A., Larijani B., Abdollahi M. The efficacy and safety of herbal medicines used in the treatment of hyperlipidemia; A systematic review. Current Pharmaceutical Design . 2010;16(26):2935–2947. doi: 10.2174/138161210793176464.
    1. Singh P., Singh D., Goel R. K. Protective effect on phenytoin-induced cognition deficit in pentylenetetrazol kindled mice: a repertoire of Glycyrrhiza glabra flavonoid antioxidants. Pharmaceutical Biology . 2016;54(7):1–10.
    1. Belinky P. A., Aviram M., Fuhrman B., Rosenblat M., Vaya J. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Atherosclerosis . 1998;137(1):49–61. doi: 10.1016/s0021-9150(97)00251-7.
    1. Zhou Y.-z., Li X., Gong W.-x., et al. Protective effect of isoliquiritin against corticosterone-induced neurotoxicity in PC12 cells. Food & Function . 2017;8(3):1235–1244. doi: 10.1039/c6fo01503d.
    1. Sun Y.-X., Tang Y., Wu A.-L., et al. Neuroprotective effect of liquiritin against focal cerebral ischemia/reperfusion in mice via its antioxidant and antiapoptosis properties. Journal of Asian Natural Products Research . 2010;12(12):1051–1060. doi: 10.1080/10286020.2010.535520.
    1. Liu Q., Lv H., Wen Z., Ci X., Peng L. Isoliquiritigenin activates nuclear factor erythroid-2 related factor 2 to suppress the NOD-like receptor protein 3 inflammasome and inhibits the NF-κB pathway in macrophages and in acute lung injury. Frontiers in Immunology . 2017;8:p. 1518. doi: 10.3389/fimmu.2017.01518.
    1. Zhu X., Liu J., Chen S., et al. Isoliquiritigenin attenuates lipopolysaccharide-induced cognitive impairment through antioxidant and anti-inflammatory activity. BMC Neuroscience . 2019;20(1):p. 41. doi: 10.1186/s12868-019-0520-x.
    1. Alzahrani S., Ajwah S. M., Alsharif S. Y., et al. Isoliquiritigenin downregulates miR-195 and attenuates oxidative stress and inflammation in STZ-induced retinal injury. Naunyn-Schmiedeberg’s Archives of Pharmacology . 2020;393(12):2375–2385. doi: 10.1007/s00210-020-01948-5.
    1. Link P., Wink M. Isoliquiritigenin exerts antioxidant activity in Caenorhabditis elegans via insulin-like signaling pathway and SKN-1. Phytomedicine . 2019;55:119–124. doi: 10.1016/j.phymed.2018.07.004.
    1. Jung E. H., Lee J.-H., Kim S. C., Kim Y. W. AMPK activation by liquiritigenin inhibited oxidative hepatic injury and mitochondrial dysfunction induced by nutrition deprivation as mediated with induction of farnesoid X receptor. European Journal of Nutrition . 2017;56(2):635–647. doi: 10.1007/s00394-015-1107-7.
    1. Huang C.-H., Chan W.-H. Protective effects of liquiritigenin against citrinin-triggered, oxidative-stress-mediated apoptosis and disruption of embryonic development in mouse blastocysts. International Journal of Molecular Sciences . 2017;18(12):p. 2538. doi: 10.3390/ijms18122538.
    1. Dogra A., Gupta D., Bag S., et al. Glabridin ameliorates methotrexate-induced liver injury via attenuation of oxidative stress, inflammation, and apoptosis. Life Sciences . 2021;278 doi: 10.1016/j.lfs.2021.119583.119583
    1. Yehuda I., Madar Z., Leikin-Frenkel A., et al. Glabridin, an isoflavan from licorice root, upregulates paraoxonase 2 expression under hyperglycemia and protects it from oxidation. Molecular Nutrition & Food Research . 2016;60(2):287–299. doi: 10.1002/mnfr.201500441.
    1. Kühnl J., Roggenkamp D., Gehrke S. A., et al. Licochalcone A activates Nrf2in vitroand contributes to licorice extract-induced lowered cutaneous oxidative stressin vivo. Experimental Dermatology . 2015;24(1):42–47. doi: 10.1111/exd.12588.
    1. Nakatani Y., Kobe A., Kuriya M., et al. Neuroprotective effect of liquiritin as an antioxidant via an increase in glucose-6-phosphate dehydrogenase expression on B65 neuroblastoma cells. European Journal of Pharmacology . 2017;815:381–390. doi: 10.1016/j.ejphar.2017.09.040.
    1. Kang M. R., Park K. H., Oh S. J., et al. Cardiovascular protective effect of glabridin: implications in LDL oxidation and inflammation. International Immunopharmacology . 2015;29(2):914–918. doi: 10.1016/j.intimp.2015.10.020.
    1. Villa T. G., Feijoo-Siota L., Rama J. L. R., Ageitos J. M. Antivirals against animal viruses. Biochemical Pharmacology . 2017;133:97–116. doi: 10.1016/j.bcp.2016.09.029.
    1. He J., Chen L., Heber D., Shi W., Lu Q.-Y. Antibacterial compounds from Glycyrrhiza uralensis. Journal of Natural Products . 2006;69(1):121–124. doi: 10.1021/np058069d.
    1. Wu S.-C., Yang Z.-Q., Liu F., et al. Antibacterial effect and mode of action of flavonoids from licorice against methicillin-resistant Staphylococcus aureus. Frontiers in Microbiology . 2019;10:p. 2489. doi: 10.3389/fmicb.2019.02489.
    1. Fukuchi K., Okudaira N., Adachi K., et al. Antiviral and antitumor activity of licorice root extracts. In Vivo . 2016;30(6):777–786. doi: 10.21873/invivo.10994.
    1. Souza R. L., Gonçalves U. O., Badoco F. R., et al. Licochalcone a induces morphological and biochemical alterations in schistosoma mansoni adult worms. Biomedicine & Pharmacotherapy . 2017;96:64–71. doi: 10.1016/j.biopha.2017.09.128.
    1. Ahn S.-J., Park S.-N., Lee Y. J., et al. In vitro antimicrobial activities of 1-methoxyficifolinol, licorisoflavan A, and 6,8-diprenylgenistein against Streptococcus mutans. Caries Research . 2015;49(1):78–89. doi: 10.1159/000362676.
    1. Yang S.-Y., Choi Y.-R., Lee M.-J., Kang M.-K. Antimicrobial effects against oral pathogens and cytotoxicity of Glycyrrhiza uralensis extract. Plants . 2020;9(7):p. 838. doi: 10.3390/plants9070838.
    1. Vaillancourt K., LeBel G., Pellerin G., Lagha A. B., Grenier D. Effects of the licorice isoflavans licoricidin and glabridin on the growth, adherence properties, and acid production of Streptococcus mutans, and assessment of their biocompatibility. Antibiotics (Basel) . 2021;10(2):p. 163. doi: 10.3390/antibiotics10020163.
    1. Asha M. K., Debraj D., Prashanth D. s., et al. In vitro anti-Helicobacter pylori activity of a flavonoid rich extract of Glycyrrhiza glabra and its probable mechanisms of action. Journal of Ethnopharmacology . 2013;145(2):581–586. doi: 10.1016/j.jep.2012.11.033.
    1. Bhargava N., Singh S. P., Sharma A., Sharma P., Capalash N. Attenuation of quorum sensing-mediated virulence of acinetobacter baumannii by Glycyrrhiza glabra flavonoids. Future Microbiology . 2015;10(12):1953–1968. doi: 10.2217/fmb.15.107.
    1. Gaur R., Gupta V. K., Singh P., Pal A., Darokar M. P., Bhakuni R. S. Drug resistance reversal potential of isoliquiritigenin and liquiritigenin isolated from Glycyrrhiza glabra against methicillin-resistant Staphylococcus aureus (MRSA) Phytotherapy Research . 2016;30(10):1708–1715. doi: 10.1002/ptr.5677.
    1. Tsukiyama R.-I., Katsura H., Tokuriki N., Kobayashi M. Antibacterial activity of licochalcone a against spore-forming bacteria. Antimicrobial Agents and Chemotherapy . 2002;46(5):1226–1230. doi: 10.1128/aac.46.5.1226-1230.2002.
    1. Seleem D., Benso B., Noguti J., Pardi V., Murata R. M. In vitro and in vivo antifungal activity of lichochalcone-A against Candida albicans biofilms. PLoS One . 2016;11(6) doi: 10.1371/journal.pone.0157188.e157188
    1. Grenier D., Marcoux E., Azelmat J., Ben Lagha A., Gauthier P. Biocompatible combinations of nisin and licorice polyphenols exert synergistic bactericidal effects against Enterococcus faecalis and inhibit NF-κB activation in monocytes. AMB Express . 2020;10(1):p. 120. doi: 10.1186/s13568-020-01056-w.
    1. Rahman H., Khan I., Hussain A., et al. Glycyrrhiza glabra HPLC fractions: identification of aldehydo isoophiopogonone and liquirtigenin having activity against multidrug resistant bacteria. BMC Complementary and Alternative Medicine . 2018;18(1):p. 140. doi: 10.1186/s12906-018-2207-8.
    1. Fatima A., Gupta V. K., Luqman S., et al. Antifungal activity of Glycyrrhiza glabra extracts and its active constituent glabridin. Phytotherapy Research . 2009;23(8):1190–1193. doi: 10.1002/ptr.2726.
    1. Liu P., Cai Y., Zhang J., et al. Antifungal activity of liquiritin in Phytophthora capsici comprises not only membrane-damage-mediated autophagy, apoptosis, and Ca2+ reduction but also an induced defense responses in pepper. Ecotoxicology and Environmental Safety . 2021;209 doi: 10.1016/j.ecoenv.2020.111813.111813
    1. Dao T. T., Nguyen P. H., Lee H. S., et al. Chalcones as novel influenza a (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorganic & Medicinal Chemistry Letters . 2011;21(1):294–298. doi: 10.1016/j.bmcl.2010.11.016.
    1. Kwon H.-J., Kim H.-H., Ryu Y. B., et al. In vitro anti-rotavirus activity of polyphenol compounds isolated from the roots of Glycyrrhiza uralensis. Bioorganic & Medicinal Chemistry . 2010;18(21):7668–7674. doi: 10.1016/j.bmc.2010.07.073.
    1. Lee S., Lee H. H., Shin Y. S., Kang H., Cho H. The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in raw 264.7 cells. Archives of Pharmacal Research . 2017;40(5):623–630. doi: 10.1007/s12272-017-0898-x.
    1. Powers C. N., Setzer W. N. An in-silico investigation of phytochemicals as antiviral agents against dengue fever. Combinatorial Chemistry & High Throughput Screening . 2016;19(7):516–536. doi: 10.2174/1386207319666160506123715.
    1. Wang H.-M., Liu T.-X., Wang T.-Y., et al. Isobavachalcone inhibits post-entry stages of the porcine reproductive and respiratory syndrome virus life cycle. Archives of Virology . 2018;163(5):1263–1270. doi: 10.1007/s00705-018-3755-4.
    1. El-Saber Batiha G., Magdy Beshbishy A., El-Mleeh A., Abdel-Daim M. M., Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae) Biomolecules . 2020;10(3):p. 352. doi: 10.3390/biom10030352.
    1. Yang L., Jiang Y., Zhang Z., Hou J., Tian S., Liu Y. The anti-diabetic activity of licorice, a widely used Chinese herb. Journal of Ethnopharmacology . 2020;263 doi: 10.1016/j.jep.2020.113216.113216
    1. Nakagawa K., Kishida H., Arai N., Nishiyama T., Mae T. Licorice flavonoids suppress abdominal fat accumulation and increase in blood glucose level in obese diabetic KK-ay mice. Biological and Pharmaceutical Bulletin . 2004;27(11):1775–1778. doi: 10.1248/bpb.27.1775.
    1. Yoshioka Y., Yamashita Y., Kishida H., Nakagawa K., Ashida H. Licorice flavonoid oil enhances muscle mass in KK-A mice. Life Sciences . 2018;205:91–96. doi: 10.1016/j.lfs.2018.05.024.
    1. Carnovali M., Luzi L., Terruzzi I., Banfi G., Mariotti M. Liquiritigenin reduces blood glucose level and bone adverse effects in hyperglycemic adult zebrafish. Nutrients . 2019;11(5):p. 1042. doi: 10.3390/nu11051042.
    1. Li J., Lim S. S., Lee E.-S., et al. Isoangustone a suppresses mesangial fibrosis and inflammation in human renal mesangial cells. Experimental Biology and Medicine . 2011;236(4):435–444. doi: 10.1258/ebm.2010.010325.
    1. Li J., Kang S.-W., Kim J.-L., Sung H.-Y., Kwun I.-S., Kang Y.-H. Isoliquiritigenin entails blockade of TGF-β1-SMAD signaling for retarding high glucose-induced mesangial matrix accumulation. Journal of Agricultural and Food Chemistry . 2010;58(5):3205–3212. doi: 10.1021/jf9040723.
    1. Choi E. M., Suh K. S., Jung W.-W., et al. Glabridin attenuates antiadipogenic activity induced by 2,3,7,8-tetrachlorodibenzo-P-dioxin in murine 3T3-L1 adipocytes. Journal of Applied Toxicology . 2018;38(11):1426–1436. doi: 10.1002/jat.3664.
    1. Xie X.-W. Liquiritigenin attenuates cardiac injury induced by high fructose-feeding through fibrosis and inflammation suppression. Biomedicine & Pharmacotherapy . 2017;86:694–704. doi: 10.1016/j.biopha.2016.12.066.
    1. Li S., Li W., Wang Y., Asada Y., Koike K. Prenylflavonoids from Glycyrrhiza uralensis and their protein tyrosine phosphatase-1B inhibitory activities. Bioorganic & Medicinal Chemistry Letters . 2010;20(18):5398–5401. doi: 10.1016/j.bmcl.2010.07.110.
    1. Li W., Li S., Higai K., et al. Evaluation of licorice flavonoids as protein tyrosine phosphatase 1B inhibitors. Bioorganic & Medicinal Chemistry Letters . 2013;23(21):5836–5839. doi: 10.1016/j.bmcl.2013.08.102.
    1. Kuna L., Jakab J., Smolic R., Raguz-Lucic N., Vcev A., Smolic M. Peptic ulcer disease: a brief review of conventional therapy and herbal treatment options. Journal of Clinical Medicine . 2019;8(2) doi: 10.3390/jcm8020179.
    1. Fukai T., Marumo A., Kaitou K., Kanda T., Terada S., Nomura T. Anti-Helicobacter pylori flavonoids from licorice extract. Life Sciences . 2002;71(12):1449–1463. doi: 10.1016/s0024-3205(02)01864-7.
    1. Park J.-M., Park S.-H., Hong K.-S., et al. Special licorice extracts containing lowered glycyrrhizin and enhanced licochalcone A PreventedHelicobacter pylori-initiated, salt diet-promoted gastric tumorigenesis. Helicobacter . 2014;19(3):221–236. doi: 10.1111/hel.12121.
    1. Jalilzadeh-Amin G., Najarnezhad V., Anassori E., Mostafavi M., Keshipour H. Antiulcer properties of Glycyrrhiza glabra L. extract on experimental models of gastric ulcer in mice. Iranian Journal of Pharmaceutical Research . 2015;14(4):1163–1170.
    1. Choi Y. H., Kim Y. J., Chae H. S., Chin Y. W. In Vivo gastroprotective effect along with pharmacokinetics, tissue distribution and metabolism of isoliquiritigenin in mice. Planta Medica . 2015;81(7):586–593. doi: 10.1055/s-0035-1545914.
    1. Liu D., Huo X., Gao L., Zhang J., Ni H., Cao L. NF-κB and Nrf2 pathways contribute to the protective effect of Licochalcone A on dextran sulphate sodium-induced ulcerative colitis in mice. Biomedicine & Pharmacotherapy . 2018;102:922–929. doi: 10.1016/j.biopha.2018.03.130.
    1. Sulzberger M., Worthmann A.-C., Holtzmann U., et al. Effective treatment for sensitive skin: 4-T-butylcyclohexanol and licochalcone a. Journal of the European Academy of Dermatology and Venereology . 2016;30:9–17. doi: 10.1111/jdv.13529.
    1. Weber T. M., Ceilley R. I., Buerger A., et al. Skin tolerance, efficacy, and quality of life of patients with red facial skin using a skin care regimen containing licochalcone a. Journal of Cosmetic Dermatology . 2006;5(3):227–232. doi: 10.1111/j.1473-2165.2006.00261.x.
    1. Boonchai W., Varothai S., Winayanuwattikun W., Phaitoonvatanakij S., Chaweekulrat P., Kasemsarn P. Randomized investigator‐blinded comparative study of moisturizer containing 4-T-butylcyclohexanol and licochalcone a versus 0.02% triamcinolone acetonide cream in facial dermatitis. Journal of Cosmetic Dermatology . 2018;17(6):1130–1135.
    1. Chen J., Yu X., Huang Y. Inhibitory mechanisms of glabridin on tyrosinase. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy . 2016;168:111–117. doi: 10.1016/j.saa.2016.06.008.
    1. Wang W. P., Hul J., Sui H., Zhao Y. S., Feng J., Liu C. Glabridin nanosuspension for enhanced skin penetration: formulation optimization, in vitro and in vivo evaluation. Die Pharmazie . 2016;71(5):252–257.
    1. Lee H., Cho H., Lim D., Kang Y.-H., Lee K., Park J. Mechanisms by which licochalcone E exhibits potent anti-inflammatory properties: studies with phorbol ester-treated mouse skin and lipopolysaccharide-stimulated murine macrophages. International Journal of Molecular Sciences . 2013;14(6):10926–10943. doi: 10.3390/ijms140610926.
    1. Kopelman P. G. Obesity as a medical problem. Nature . 2000;404(6778):635–643. doi: 10.1038/35007508.
    1. Gadde K. M., Martin C. K., Berthoud H.-R., Heymsfield S. B. Obesity: pathophysiology and management. Journal of the American College of Cardiology . 2018;71(1):69–84. doi: 10.1016/j.jacc.2017.11.011.
    1. Lee J.-W., Choe S. S., Jang H., et al. AMPK activation with glabridin ameliorates adiposity and lipid dysregulation in obesity. Journal of Lipid Research . 2012;53(7):1277–1286. doi: 10.1194/jlr.m022897.
    1. Mori N., Nakanishi S., Shiomi S., et al. Enhancement of fat oxidation by licorice flavonoid oil in healthy humans during light exercise. Journal of Nutritional Science & Vitaminology . 2015;61(5):406–416. doi: 10.3177/jnsv.61.406.
    1. Bartelt A., Bruns O. T., Reimer R., et al. Brown adipose tissue activity controls triglyceride clearance. Nature Medicine . 2011;17(2):200–205. doi: 10.1038/nm.2297.
    1. Nedergaard J., Bengtsson T., Cannon B. New powers of Brown fat: fighting the metabolic syndrome. Cell Metabolism . 2011;13(3):238–240. doi: 10.1016/j.cmet.2011.02.009.
    1. Lee H. E., Yang G., Han S.-H., et al. Anti-obesity potential of Glycyrrhiza uralensis and licochalcone a through induction of adipocyte browning. Biochemical and Biophysical Research Communications . 2018;503(3):2117–2123. doi: 10.1016/j.bbrc.2018.07.168.
    1. Park H. G., Bak E. J., Woo G.-H., et al. Licochalcone E has an antidiabetic effect. The Journal of Nutritional Biochemistry . 2012;23(7):759–767. doi: 10.1016/j.jnutbio.2011.03.021.
    1. Liou C.-J., Lee Y.-K., Ting N.-C., et al. Protective effects of licochalcone a ameliorates obesity and non-alcoholic fatty liver disease via promotion of the sirt-1/AMPK pathway in mice fed a high-fat diet. Cells . 2019;8(5):p. 447. doi: 10.3390/cells8050447.

Source: PubMed

3
Abonnieren