The Role of Traditional Chinese Medicine in the Regulation of Oxidative Stress in Treating Coronary Heart Disease

Xinyu Yang, Tianmai He, Songjie Han, Xiaoyu Zhang, Yang Sun, Yanwei Xing, Hongcai Shang, Xinyu Yang, Tianmai He, Songjie Han, Xiaoyu Zhang, Yang Sun, Yanwei Xing, Hongcai Shang

Abstract

Oxidative stress has been closely related with coronary artery disease. In coronary heart disease (CHD), an excess of reactive oxygen species (ROS) production generates endothelial cell and smooth muscle functional disorders, leading to a disequilibrium between the antioxidant capacity and prooxidants. ROS also leads to inflammatory signal activation and mitochondria-mediated apoptosis, which can promote and increase the occurrence and development of CHD. There are several kinds of antioxidative and small molecular systems of antioxidants, such as β-carotene, ascorbic acid, α-tocopherol, and reduced glutathione (GSH). Studies have shown that antioxidant treatment was effective and decreased the risk of CHD, but the effect of the treatment varies greatly. Traditional Chinese medicine (TCM) has been utilized for thousands of years in China and is becoming increasingly popular all over the world, especially for the treatments of cardiovascular diseases. This review will concentrate on the evidence of the action mechanism of TCM in preventing CHD by modulating oxidative stress-related signaling pathways.

Figures

Figure 1
Figure 1
The mechanism of TCM in preventing CHD by oxidative stress-related signaling pathways. HJT: Hongjingtian injection; mTOR: mammalian target of rapamycin; LC-3B: light chain 3B; NADPH: nicotinamide adenine dinucleotide phosphate; GSSG: glutathione disulfide; GSH: glutathione; SOD: superoxide dismutase; PI3K: phosphoinositide 3-kinase; Akt: serine/threonine kinase; Nrf2: nuclear factor erythroid-2-related factor 2; AMPK: adenosine monophosphate-activated protein kinase; PUN: punicalagin; DSS: Danshensu; OP-D: Ophiopogonin D; TXL: Tongxinluo; TNF-α: tumor necrosis factor-α; IL-6: interleukin-6; NF-κB: nuclear factor-κB; IL-10: interleukin-10; CRP: C-reaction protein; DG: Dunye Guanxinning; TMYX: Tongmai Yangxin pill; DSY: Dan-Shen-Yin; OSR: oxysophoridine; QSYQ: Qi-shen-yi-qi; XO: xanthine oxidase; NOX: NADPH oxidase; eNOS: endothelial nitric oxide synthase; CP: cardiotonic pill; SXSM: Shenxian-shengmai; SMS: Shengmai San; Bcl-2: B-cell lymphoma-2; Bax: Bcl-2-associated protein X; YQFM: YiQiFuMai powder injection; SAL: salvianolic acid; TAN: tanshinone; GXT: Guanxintai; BXT: Bao-Xin-Tang; G. acuta: Gentianella acuta.

References

    1. Anderson L., Oldridge N., Thompson D. R., et al. Exercise-based cardiac rehabilitation for coronary heart disease: Cochrane systematic review and meta-analysis. Journal of the American College of Cardiology. 2016;67(1):1–12. doi: 10.1016/j.jacc.2015.10.044.
    1. Yang X., Li Y., Ren X., et al. Effects of exercise-based cardiac rehabilitation in patients after percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Scientific Reports. 2017;7(1, article 44789) doi: 10.1038/srep44789.
    1. Kelly B. B., Narula J., Fuster V. Recognizing global burden of cardiovascular disease and related chronic diseases. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine. 2012;79(6):632–640. doi: 10.1002/msj.21345.
    1. Kaur K., Bedi G., Kaur M., Vij A., Kaur I. Lipid peroxidation and the levels of antioxidant enzymes in coronary artery disease. Indian Journal of Clinical Biochemistry. 2008;23(1):33–37. doi: 10.1007/s12291-008-0008-4.
    1. Ahmad N., Bhopal R. Is coronary heart disease rising in India? A systematic review based on ECG defined coronary heart disease. Heart. 2005;91(6):719–725. doi: 10.1136/hrt.2003.031047.
    1. Cosentino F., Sill J. C., Katusic Z. S. Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension. 1994;23(2):229–235. doi: 10.1161/01.HYP.23.2.229.
    1. Harrison D. G. Cellular and molecular mechanisms of endothelial cell dysfunction. The Journal of Clinical Investigation. 1997;100(9):2153–2157. doi: 10.1172/JCI119751.
    1. Kerr S., Brosnan M. J., McIntyre M., Reid J. L., Dominiczak A. F., Hamilton C. A. Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension. 1999;33(6):1353–1358. doi: 10.1161/01.HYP.33.6.1353.
    1. Tsimikas S. In vivo markers of oxidative stress and therapeutic interventions. The American Journal of Cardiology. 2008;101(10A):34D–42D. doi: 10.1016/j.amjcard.2008.02.006.
    1. Juni R. P., Duckers H. J., Vanhoutte P. M., Virmani R., Moens A. L. Oxidative stress and pathological changes after coronary artery interventions. Journal of the American College of Cardiology. 2013;61(14):1471–1481. doi: 10.1016/j.jacc.2012.11.068.
    1. Li B. Q., Liu D. M., Cui W. Advances in the study of sudden cardiac death after revascularization in patients with coronary heart disease. Chinese Circulation Journal. 2018;33(11):1134–1137.
    1. Leopold J. A., Loscalzo J. Oxidative risk for atherothrombotic cardiovascular disease. Free Radical Biology and Medicine. 2009;47(12):1673–1706. doi: 10.1016/j.freeradbiomed.2009.09.009.
    1. Lubos E., Loscalzo J., Handy D. E. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling. 2011;15(7):1957–1997. doi: 10.1089/ars.2010.3586.
    1. Tullio F., Angotti C., Perrelli M.-G., Penna C., Pagliaro P. Redox balance and cardioprotection. Basic Research in Cardiology. 2013;108(6):p. 392. doi: 10.1007/s00395-013-0392-7.
    1. Zhang C., Yu H., Shen Y., Ni X., Shen S., Das U. N. Polyunsaturated fatty acids trigger apoptosis of colon cancer cells through a mitochondrial pathway. Archives of Medical Science. 2015;11(5):1081–1094.
    1. Leopold J. A. Antioxidants and coronary artery disease: from pathophysiology to preventive therapy. Coronary Artery Disease. 2015;26(2):176–183. doi: 10.1097/MCA.0000000000000187.
    1. Willcox B. J., Curb J. D., Rodriguez B. L. Antioxidants in cardiovascular health and disease: key lessons from epidemiologic studies. The American Journal of Cardiology. 2008;101(10):S75–S86. doi: 10.1016/j.amjcard.2008.02.012.
    1. Kendall M. J., Nuttall S. L. Anti-oxidant therapy for the treatment of coronary artery disease. Expert Opinion on Investigational Drugs. 1999;8(11):1763–1784. doi: 10.1517/13543784.8.11.1763.
    1. Wang D., Calabrese E. J., Lian B., Lin Z., Calabrese V. Hormesis as a mechanistic approach to understanding herbal treatments in traditional Chinese medicine. Pharmacology & Therapeutics. 2018;184:42–50. doi: 10.1016/j.pharmthera.2017.10.013.
    1. Rajadurai M., Stanely Mainzen Prince P. Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology. 2006;228(2-3):259–268. doi: 10.1016/j.tox.2006.09.005.
    1. Wu L., Qiao H., Li Y., Li L. Protective roles of puerarin and Danshensu on acute ischemic myocardial injury in rats. Phytomedicine. 2007;14(10):652–658. doi: 10.1016/j.phymed.2007.07.060.
    1. Li C.-s., Qu Z.-q., Wang S.-s., et al. Effects of Suxiao Jiuxin pill (速效救心丸) on oxidative stress and inflammatory response in rats with experimental atherosclerosis. Journal of Traditional Chinese Medicine. 2011;31(2):107–111. doi: 10.1016/S0254-6272(11)60022-8.
    1. Bagheri F., Khori V., Alizadeh A. M., Khalighfard S., Khodayari S., Khodayari H. Reactive oxygen species-mediated cardiac-reperfusion injury: mechanisms and therapies. Life Sciences. 2016;165:43–55. doi: 10.1016/j.lfs.2016.09.013.
    1. Jiang S. Y., Tong J. C., Sun R. Y., Xie H. T. Meta-analysis of compound Danshen dropping pills(DSP) in treating coronary heart disease angina. Practical Pharmacy and Clinical Remedies. 2007;10(6):334–337.
    1. Zhou X., Chan S. W., Tseng H. L., et al. Danshensu is the major marker for the antioxidant and vasorelaxation effects of Danshen (Salvia miltiorrhiza) water-extracts produced by different heat water-extractions. Phytomedicine. 2012;19(14):1263–1269. doi: 10.1016/j.phymed.2012.08.011.
    1. Zhao G. R., Zhang H. M., Ye T. X., et al. Characterization of the radical scavenging and antioxidant activities of Danshensu and salvianolic acid B. Food and Chemical Toxicology. 2008;46(1):73–81. doi: 10.1016/j.fct.2007.06.034.
    1. Zhao Q. T., Guo Q. M., Wang P., Wang Q. Salvianic acid A inhibits lipopolysaccharide-induced apoptosis through regulating glutathione peroxidase activity and malondialdehyde level in vascular endothelial cells. Chinese Journal of Natural Medicines. 2012;10(1):53–57. doi: 10.1016/S1875-5364(12)60012-0.
    1. Yang G.-D., Zhang H., Lin R., et al. Down-regulation of CD40 gene expression and inhibition of apoptosis with Danshensu in endothelial cells. Basic & Clinical Pharmacology & Toxicology. 2009;104(2):87–92. doi: 10.1111/j.1742-7843.2008.00342.x.
    1. Guan Y., Yin Y., Zhu Y.-R., et al. Dissection of mechanisms of a Chinese medicinal formula: Danhong injection therapy for myocardial ischemia/reperfusion injury in vivo and in vitro. Evidence-Based Complementary and Alternative Medicine. 2013;2013:12. doi: 10.1155/2013/972370.972370
    1. Zhao B. L., Jiang W., Zhao Y., Hou J. W., Xin W. J. Scavenging effects of salvia miltiorrhiza on free radicals and its protection for myocardial mitochondrial membranes from ischemia-reperfusion injury. Biochemistry and Molecular Biology International. 1996;38(6):1171–1182.
    1. Le X.-Y., Chen C.-L., Ma L., Zhao N., Tang Y.-Q., Liu X.-Q. Effects of Danshensu on the incidence of ischemia-reperfusion induced arrhythmia in hypertrophy rat heart. Chinese Journal of Natural Medicines. 2008;6(6):461–465. doi: 10.1016/S1875-5364(09)60037-6.
    1. Yin Y., Guan Y., Duan J., et al. Cardioprotective effect of Danshensu against myocardial ischemia/reperfusion injury and inhibits apoptosis of H9c2 cardiomyocytes via Akt and ERK1/2 phosphorylation. European Journal of Pharmacology. 2013;699(1-3):219–226. doi: 10.1016/j.ejphar.2012.11.005.
    1. Li M., Zhao C., Wong R. N., Goto S., Wang Z., Liao F. Inhibition of shear-induced platelet aggregation in rat by tetramethylpyrazine and salvianolic acid B. Clinical Hemorheology and Microcirculation. 2004;31(2):97–103.
    1. Wang X., Wang Y., Jiang M., et al. Differential cardioprotective effects of salvianolic acid and tanshinone on acute myocardial infarction are mediated by unique signaling pathways. Journal of Ethnopharmacology. 2011;135(3):662–671. doi: 10.1016/j.jep.2011.03.070.
    1. Yu J., Wang L., Akinyi M., et al. Danshensu protects isolated heart against ischemia reperfusion injury through activation of Akt/ERK1/2/Nrf2 signaling. International Journal of Clinical and Experimental Medicine. 2015;8(9):14793–14804.
    1. Tang Y., Wang M., le X., et al. Antioxidant and cardioprotective effects of Danshensu (3-(3, 4-dihydroxyphenyl)-2-hydroxy-propanoic acid from Salvia miltiorrhiza) on isoproterenol-induced myocardial hypertrophy in rats. Phytomedicine. 2011;18(12):1024–1030. doi: 10.1016/j.phymed.2011.05.007.
    1. Liu J., Shen H. M., Ong C. N. Role of intracellular thiol depletion, mitochondrial dysfunction and reactive oxygen species in Salvia miltiorrhiza-induced apoptosis in human hepatoma HepG2 cells. Life Sciences. 2001;69(16):1833–1850. doi: 10.1016/S0024-3205(01)01267-X.
    1. Kim M.-S., Kim S.-H. Inhibitory effect of astragalin on expression of lipopolysaccharide-induced inflammatory mediators through NF-κB in macrophages. Archives of Pharmacal Research. 2011;34(12):2101–2107. doi: 10.1007/s12272-011-1213-x.
    1. Burmistrova O., Quintana J., Díaz J. G., Estévez F. Astragalin heptaacetate-induced cell death in human leukemia cells is dependent on caspases and activates the MAPK pathway. Cancer Letters. 2011;309(1):71–77. doi: 10.1016/j.canlet.2011.05.018.
    1. Cho I. H., Gong J. H., Kang M. K., et al. Astragalin inhibits airway eotaxin-1 induction and epithelial apoptosis through modulating oxidative stress-responsive MAPK signaling. BMC Pulmonary Medicine. 2014;14(1) doi: 10.1186/1471-2466-14-122.
    1. Qu D., Han J., Ren H., et al. Cardioprotective effects of astragalin against myocardial ischemia/reperfusion injury in isolated rat heart. Oxidative Medicine and Cellular Longevity. 2016;2016:11. doi: 10.1155/2016/8194690.8194690
    1. Han J., Wang D., Yu B., et al. Cardioprotection against ischemia/reperfusion by licochalcone B in isolated rat hearts. Oxidative Medicine and Cellular Longevity. 2014;2014:11. doi: 10.1155/2014/134862.134862
    1. Zhou M., Liu L., Wang W., et al. Role of licochalcone C in cardioprotection against ischemia/reperfusion injury of isolated rat heart via antioxidant, anti-inflammatory, and anti-apoptotic activities. Life Sciences. 2015;132:27–33. doi: 10.1016/j.lfs.2015.04.008.
    1. Qian J., Jiang F., Wang B., et al. Ophiopogonin D prevents H2O2-induced injury in primary human umbilical vein endothelial cells. Journal of Ethnopharmacology. 2010;128(2):438–445. doi: 10.1016/j.jep.2010.01.031.
    1. Jiang M., Kang L., Wang Y., et al. A metabonomic study of cardioprotection of ginsenosides, schizandrin, and ophiopogonin D against acute myocardial infarction in rats. BMC Complementary and Alternative Medicine. 2014;14(1):p. 350. doi: 10.1186/1472-6882-14-350.
    1. Huang Q., Gao B., Wang L., et al. Ophiopogonin D: a new herbal agent against osteoporosis. Bone. 2015;74:18–28. doi: 10.1016/j.bone.2015.01.002.
    1. You W., Zhou T., Ma Z., et al. Ophiopogonin D maintains Ca2+ homeostasis in rat cardiomyocytes in vitro by upregulating CYP2J3/EETs and suppressing ER stress. Acta Pharmacologica Sinica. 2016;37(3):368–381. doi: 10.1038/aps.2015.146.
    1. Huang X., Wang Y., Wang Y., Yang L., Wang J., Gao Y. Ophiopogonin D reduces myocardial ischemia-reperfusion injury via upregulating CYP2J3/EETs in rats. Cellular Physiology and Biochemistry. 2018;49(4):1646–1658. doi: 10.1159/000493500.
    1. Huang X. Y., Wang Y. G., Zhang Z. Y., et al. Ophiopogonin D and EETs ameliorate Ang IIinduced inflammatory responses via activating PPARalpha in HUVECs. Biochemical and Biophysical Research Communications. 2017;490(2):123–133. doi: 10.1016/j.bbrc.2017.06.007.
    1. Seubert J., Yang B., Bradbury J. A., et al. Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circulation Research. 2004;95(5):506–514. doi: 10.1161/01.RES.0000139436.89654.c8.
    1. Morimoto T., Sunagawa Y., Kawamura T., et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. The Journal of Clinical Investigation. 2008;118(3):868–878. doi: 10.1172/JCI33160.
    1. Ahuja S., Kohli S., Krishnan S., Dogra D., Sharma D., Rani V. Curcumin: a potential therapeutic polyphenol, prevents noradrenaline-induced hypertrophy in rat cardiac myocytes. The Journal of Pharmacy and Pharmacology. 2011;63(12):1604–1612. doi: 10.1111/j.2042-7158.2011.01363.x.
    1. Kumphune S., Surinkaew S., Chattipakorn S. C., Chattipakorn N. Inhibition of p38 MAPK activation protects cardiac mitochondria from ischemia/reperfusion injury. Pharmaceutical Biology. 2015;53(12):1831–1841. doi: 10.3109/13880209.2015.1014569.
    1. Liu H. J., Wang C. H., Qiao Z., Xu Y. Protective effect of curcumin against myocardium injury in ischemia reperfusion rats. Pharmaceutical Biology. 2017;55(1):1144–1148. doi: 10.1080/13880209.2016.1214741.
    1. Kim O. S., Park E. J., Joe E., Jou I. JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells. Journal of Biological Chemistry. 2002;277(43):40594–40601. doi: 10.1074/jbc.M203885200.
    1. Cho S. O., Lim J. W., Kim H. Red ginseng extract inhibits the expression of MCP-1 and iNOS in Helicobacter pylori-infected gastric epithelial cells by suppressing the activation of NADPH oxidase and Jak2/Stat3. Journal of Ethnopharmacology. 2013;150(2):761–764. doi: 10.1016/j.jep.2013.09.013.
    1. Guo D., Li J., Wang Y., Lei L., Yu C., Chen N. Cyclovirobuxinum D suppresses lipopolysaccharide-induced inflammatory responses in murine macrophages in vitro by blocking JAK-STAT signaling pathway. Acta Pharmacologica Sinica. 2014;35(6):770–778. doi: 10.1038/aps.2014.16.
    1. Chen B., Longtine M. S., Nelson D. M. Punicalagin, a polyphenol in pomegranate juice, downregulates p53 and attenuates hypoxia-induced apoptosis in cultured human placental syncytiotrophoblasts. American Journal of Physiology-Endocrinology and Metabolism. 2013;305(10):E1274–E1280. doi: 10.1152/ajpendo.00218.2013.
    1. Yaidikar L., Byna B., Thakur S. R. Neuroprotective effect of punicalagin against cerebral ischemia reperfusion-induced oxidative brain injury in rats. Journal of Stroke and Cerebrovascular Diseases. 2014;23(10):2869–2878. doi: 10.1016/j.jstrokecerebrovasdis.2014.07.020.
    1. Ding M., Wang Y., Sun D., et al. Punicalagin pretreatment attenuates myocardial ischemia-reperfusion injury via activation of AMPK. The American Journal of Chinese Medicine. 2017;45(01):53–66. doi: 10.1142/S0192415X17500057.
    1. Cao K., Xu J., Pu W., et al. Punicalagin, an active component in pomegranate, ameliorates cardiac mitochondrial impairment in obese rats via AMPK activation. Scientific Reports. 2015;5(1, article 14014) doi: 10.1038/srep14014.
    1. Lam R. Y. Y., Woo A. Y. H., Leung P. S., Cheng C. H. K. Antioxidant actions of phenolic compounds found in dietary plants on low-density lipoprotein and erythrocytes in vitro. Journal of the American College of Nutrition. 2007;26(3):233–242. doi: 10.1080/07315724.2007.10719606.
    1. Zhang P., Liu X., Huang G., Bai C., Zhang Z., Li H. Barbaloin pretreatment attenuates myocardial ischemia-reperfusion injury via activation of AMPK. Biochemical and Biophysical Research Communications. 2017;490(4):1215–1220. doi: 10.1016/j.bbrc.2017.06.188.
    1. Ren X., Wang X., Yuan M., et al. Mechanisms and treatments of oxidative stress in atrial fibrillation. Current Pharmaceutical Design. 2018;24(26):3062–3071. doi: 10.2174/1381612824666180903144042.
    1. Patel D. K., Patel K., Tahilyani V. Barbaloin: a concise report of its pharmacological and analytical aspects. Asian Pacific Journal of Tropical Biomedicine. 2012;2(10):835–838. doi: 10.1016/S2221-1691(12)60239-1.
    1. Wang R., Tang X. C. Neuroprotective effects of huperzine A. A natural cholinesterase inhibitor for the treatment of Alzheimer’s disease. Neurosignals. 2005;14(1-2):71–82. doi: 10.1159/000085387.
    1. Yu W., Liu Q., Zhu S. Carvacrol protects against acute myocardial infarction of rats via anti-oxidative and anti-apoptotic pathways. Biological & Pharmaceutical Bulletin. 2013;36(4):579–584. doi: 10.1248/bpb.b12-00948.
    1. Meng C., Liu C., Liu Y., Wu F. Oxysophoridine attenuates the injury caused by acute myocardial infarction in rats through anti‑oxidative, anti‑inflammatory and anti‑apoptotic pathways. Molecular Medicine Reports. 2015;11(1):527–532. doi: 10.3892/mmr.2014.2748.
    1. Müller D. N., Mervaala E. M. A., Dechend R., et al. Angiotensin II (AT1) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy. The American Journal of Pathology. 2000;157(1):111–122. doi: 10.1016/S0002-9440(10)64523-3.
    1. Speir E. Cytomegalovirus gene regulation by reactive oxygen species. Agents in atherosclerosis. Annals of the New York Academy of Sciences. 2000;899:363–374.
    1. Wu N. R., Chun L., Khas B. G. Ewenki folk medicinal plants and its comparison with Mongolian medicine. Chinese Journal of Ethnomedicine and Ethnopharmacy. 2009;17:156–158.
    1. Kuang H. X., Wu G. S., Liu H., et al. Isolation and identification of xanthones from Gentianella acuta. Zhongguo Zhong Yao Za Zhi. 2016;41(12):2280–2283. doi: 10.4268/cjcmm20161218.
    1. Marona H., Librowski T., Cegła M., Erdogan C., Sahin N. O. Antiarrhythmic and antihypertensive activity of some xanthone derivatives. Acta Poloniae Pharmaceutica. 2008;65(3):383–390.
    1. Mahendran G., Manoj M., Murugesh E., et al. In vivo anti-diabetic, antioxidant and molecular docking studies of 1, 2, 8-trihydroxy-6-methoxy xanthone and 1, 2-dihydroxy-6-methoxyxanthone-8-O-β-d-xylopyranosyl isolated from Swertia corymbosa. Phytomedicine. 2014;21(11):1237–1248. doi: 10.1016/j.phymed.2014.06.011.
    1. Tantapakul C., Maneerat W., Sripisut T., et al. New benzophenones and xanthones from Cratoxylum sumatranum ssp. neriifolium and their antibacterial and antioxidant activities. Journal of Agricultural and Food Chemistry. 2016;64(46):8755–8762. doi: 10.1021/acs.jafc.6b03643.
    1. Kavitha M., Nataraj J., Essa M. M., Memon M. A., Manivasagam T. Mangiferin attenuates MPTP induced dopaminergic neurodegeneration and improves motor impairment, redox balance and Bcl-2/Bax expression in experimental Parkinson’s disease mice. Chemico-Biological Interactions. 2013;206(2):239–247. doi: 10.1016/j.cbi.2013.09.016.
    1. Yang X., Liu N., Li X., et al. A review on the effect of traditional Chinese medicine against anthracycline-induced cardiac toxicity. Frontiers in Pharmacology. 2018;9:p. 444. doi: 10.3389/fphar.2018.00444.
    1. Yang S., Chou G., Li Q. Cardioprotective role of azafrin in against myocardial injury in rats via activation of the Nrf2-ARE pathway. Phytomedicine. 2018;47:12–22. doi: 10.1016/j.phymed.2018.04.042.
    1. Kensler T. W., Wakabayashi N., Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annual Review of Pharmacology and Toxicology. 2007;47(1):89–116. doi: 10.1146/annurev.pharmtox.46.120604.141046.
    1. Zhang Z. Q., Xing Z. H., Tang T., Liu W. P., Yi L. Influence of baoxin decoction on serum VEGF in patients with myocardial infarction after PTCA. Journal of Beijing University of Traditional Chinese Medicine. 2006;29(4):277–278.
    1. Wang Y., Wang W., Peng W., et al. Cardioprotective roles of the Chinese medicinal formula Bao-Xin-Tang on acute myocardial infarction in rats. African Journal of Traditional, Complementary, and Alternative Medicines. 2017;14(2):65–74. doi: 10.21010/ajtcam.v14i2.8.
    1. Shang Q., Wang H., Li S., Xu H. The effect of sodium Tanshinone IIA sulfate and simvastatin on elevated serum levels of inflammatory markers in patients with coronary heart disease: a study protocol for a randomized controlled trial. Evidence-based Complementary and Alternative Medicine. 2013;2013:8. doi: 10.1155/2013/756519.756519
    1. Kiruthiga P. V., Shafreen R. B., Pandian S. K., Arun S., Govindu S., Devi K. P. Protective effect of silymarin on erythrocyte haemolysate against benzo(a)pyrene and exogenous reactive oxygen species (H2O2) induced oxidative stress. Chemosphere. 2007;68(8):1511–1518. doi: 10.1016/j.chemosphere.2007.03.015.
    1. Xie M. Sheng-Mai-San and Dan-Shen-Yin treat coronary heart disease 60 cases. Chinese Medicine Modern Distance Education of China. 2008;6(11):p. 1357.
    1. Liu R. S. Jia-Wei-Dan-Shen-Yin treat coronary heart disease 68 cases. Chinese Journal of Integrative Medicine on Cardio/Cerebrovascular Disease. 2010;8(5):p. 604.
    1. Yan K.-P., Guo Y., Xing Z., et al. Dan-Shen-Yin protects the heart against inflammation and oxidative stress induced by acute ischemic myocardial injury in rats. Experimental and Therapeutic Medicine. 2012;3(2):314–318. doi: 10.3892/etm.2011.404.
    1. Krishnamurthy P., Lambers E., Verma S., et al. Myocardial knockdown of mRNA-stabilizing protein HuR attenuates post-MI inflammatory response and left ventricular dysfunction in IL-10-null mice. The FASEB Journal. 2010;24(7):2484–2494. doi: 10.1096/fj.09-149815.
    1. Li X., Yang X., Li Y., et al. Mitochondria and the pathophysiological mechanism of atrial fibrillation. Current Pharmaceutical Design. 2018;24(26):3055–3061. doi: 10.2174/1381612824666180903125300.
    1. Yuan M., Liu N., Wang X., et al. The mechanism of exosomes function in neurological diseases: a progressive review. Current Pharmaceutical Design. 2018;24(24):2855–2861. doi: 10.2174/1381612824666180903113136.
    1. Zhen L. A., Ying Z. X., Tao D., Qing W. H., Yan G. J., Liang W. Therapeutic effect of Danhong injection combined with Dunye Guanxinning tablet on acute myocardial infarction and its effect on platelet activation biomarkers. Modern Journal of Integrated Traditional Chinese and Western Medicine. 2016;25(6):615–617.
    1. Zhang Q. G., Wang S. R., Chen X. M., Guo H. N., Ling S., Xu J. W. Dunye Guanxinning improves acute myocardial ischemia-reperfusion injury by inhibiting neutrophil infiltration and caspase-1 activity. Mediators of Inflammation. 2018;2018:13. doi: 10.1155/2018/4608017.4608017
    1. Qi M., Tang M. Y., Zhou H. Q., Zhou Y. Clinical observation of sofren injection in the treatment of angina pectoris. China Modern Doctor. 2016;54(21):139–144.
    1. Zhang S., Zhang L., Zhang H., et al. Hongjingtian injection attenuates myocardial oxidative damage via promoting autophagy and inhibiting apoptosis. Oxidative Medicine and Cellular Longevity. 2017;2017:11. doi: 10.1155/2017/6965739.6965739
    1. Wu T., Zhou H., Jin Z., et al. Cardioprotection of salidroside from ischemia/reperfusion injury by increasing N-acetylglucosamine linkage to cellular proteins. European Journal of Pharmacology. 2009;613(1–3):93–99. doi: 10.1016/j.ejphar.2009.04.012.
    1. Shi K., Wang X., Zhu J., Cao G., Zhang K., Su Z. Salidroside protects retinal endothelial cells against hydrogen peroxide-induced injury via modulating oxidative status and apoptosis. Bioscience, Biotechnology, and Biochemistry. 2015;79(9):1406–1413. doi: 10.1080/09168451.2015.1038212.
    1. Wang Y., Cai D. L. Clinical observation on the treatment of unstable angina pectoris with Guanxintai pills. Heilongjiang Medicine and Pharmacy. 2011;34(3):p. 104.
    1. Zhang Y. Z. Observation of curative effect of Guanxintai pills on angina pectoris. Clinical Rational Drug Use. 2012;5(2C):74–75.
    1. Bai X. P. Clinical observation on the treatment of unstable angina pectoris with Guanxintai. Modern Journal of Integrated Traditional Chinese and Western Medicine. 2011;20(22):2763–2766.
    1. Song L. Q., Zhang X. D., Zhao L. P., Zhang M. L., Han X. H., Sun D. Observation of curative effect of Guanxintai on angina pectoris. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease. 2012;20(3):p. 464.
    1. Qi Y. H., Zhang M. L., Yin L. The 34 cases of the patients with ventricular premature beats treated with Guanxintai and amiodarone hydrochloride tablets. Guide of China Medicine. 2012;10(10):301–302.
    1. Sun C. Y., Wang R. Y. Clinical efficacy of Guanxintai pills combined with Western medicine on the treatment of angina pectoris combined with hyperlipidemia. China Medical Engineering. 2011;19(2):49–51.
    1. Yang J., Sun W., Sun J., et al. Guanxintai exerts protective effects on ischemic cardiomyocytes by mitigating oxidative stress. Evidence-Based Complementary and Alternative Medicine. 2017;2017:10. doi: 10.1155/2017/4534387.4534387
    1. Guan F. Y., Li H., Yu X. X., Yang S. J. Effects of astragalus injection on myocardial cell damages due to oxidative stress. Chinese Journal of Rehabilitation Theory and Practice. 2010;16(9):830–832.
    1. Zhang D. F., Wang M. W., Wang L. S., et al. Effect of salvianolate on oxidative stress and brain natriuretic peptide in acute myocardial infarction. Chinese Journal of Integrative Medicine on Cardio/Cerebrovascular Disease. 2008;6(11):1304–1306.
    1. Yang X. Y., Zhao N., Liu Y. Y., et al. Inhibition of NADPH oxidase mediates protective effect of cardiotonic pills against rat heart ischemia/reperfusion injury. Evidence-Based Complementary and Alternative Medicine. 2013;2013:15. doi: 10.1155/2013/728020.728020
    1. Zhao N., Liu Y. Y., Wang F., et al. Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats. American Journal of Physiology-Heart and Circulatory Physiology. 2010;298(4):H1166–H1176. doi: 10.1152/ajpheart.01186.2009.
    1. Son H. Y., Han H. S., Jung H. W., Park Y.-K. Panax notoginseng attenuates the infarct volume in rat ischemic brain and the inflammatory response of microglia. Journal of Pharmacological Sciences. 2009;109(3):368–379. doi: 10.1254/jphs.08197FP.
    1. Hu J. H., Chen S. J., Hua X. L. Clinical research of Shenxianshengmai oral liquid in the treatment of sick sinus syndrome and sinus bradycardia. Chinese Traditional Patent Medicine. 2012;34(1):7–9.
    1. Li P., Zeng L. Clinical observation of Shenxian-shengmaioral liquid in the treatment of bradycardia. Chinese Journal of Integrative Medicine on Cardio. 2011;9(9):1121–1122.
    1. Zhao Y., Zhang X., Luan J., et al. Shenxian-Shengmai oral liquid reduces myocardial oxidative stress and protects myocardium from ischemia-reperfusion injury. Cellular Physiology and Biochemistry. 2018;48(6):2503–2516. doi: 10.1159/000492688.
    1. Liu Z. Y., Huang J., Liu N. N., et al. Molecular mechanisms of increased heart rate in Shenxianshengmai-treated bradycardia rabbits. Chinese Medical Journal. 2017;130(2):179–186.
    1. Hong C., Wang Y., Lou J., Liu Q., Qu H., Cheng Y. Analysis of myocardial proteomic alteration after QiShenYiQi formula treatment in acute infarcted rat hearts. Zhongguo Zhong Yao Za Zhi. 2009;34(8):1018–1021.
    1. Dai G. H., Zhang B. L., Guo Z. X. Application of central randomized system in project of clinical trial for secondary prevention of myocardial infarction by Qishen Yiqi drop pill. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2007;27(7):653–656.
    1. Li C., Wang Y., Qiu Q., et al. QiShenYiQi protects ligation-induced left ventricular remodeling by attenuating inflammation and fibrosis via STAT3 and NF-κB signaling pathway. PLoS One. 2014;9(8, article e104255) doi: 10.1371/journal.pone.0104255.
    1. Wang Y., Li C., Ouyang Y., et al. Cardioprotective effects of QiShenYiQi mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin-converting enzyme 2. Evidence-Based Complementary and Alternative Medicine. 2012;2012:9. doi: 10.1155/2012/978127.978127
    1. Zhang L., Liu Y., Lu X. T., et al. Traditional Chinese medication Tongxinluo dose-dependently enhances stability of vulnerable plaques: a comparison with a high-dose simvastatin therapy. American Journal of Physiology-Heart and Circulatory Physiology. 2009;297(6):H2004–H2014. doi: 10.1152/ajpheart.00208.2009.
    1. Wang B., Yang Q., Bai W. W., et al. Tongxinluo protects against pressure overload–induced heart failure in mice involving VEGF/Akt/eNOS pathway activation. PLoS One. 2014;9(6, article e98047) doi: 10.1371/journal.pone.0098047.
    1. Bai W. W., Xing Y. F., Wang B., et al. Tongxinluo improves cardiac function and ameliorates ventricular remodeling in mice model of myocardial infarction through enhancing angiogenesis. Evidence-based Complementary and Alternative Medicine. 2013;2013:9. doi: 10.1155/2013/813247.813247
    1. Cao G. S., Chen H. L., Zhang Y. Y., et al. YiQiFuMai powder injection ameliorates the oxygen-glucose deprivation-induced brain microvascular endothelial barrier dysfunction associated with the NF-κB and ROCK1/MLC signaling pathways. Journal of Ethnopharmacology. 2016;183:18–28. doi: 10.1016/j.jep.2016.02.028.
    1. Wang Y. Q., Liu C. H., Zhang J. Q., Zhu D. N., Yu B. Y. Protective effects and active ingredients of Yi-Qi-Fu-Mai sterile powder against myocardial oxidative damage in mice. Journal of Pharmacological Sciences. 2013;122(1):17–27. doi: 10.1254/jphs.12261FP.
    1. Pang L. Z., Ju A. C., Zheng X. J., et al. YiQiFuMai powder injection attenuates coronary artery ligation-induced myocardial remodeling and heart failure through modulating MAPKs signaling pathway. Journal of Ethnopharmacology. 2017;202:67–77. doi: 10.1016/j.jep.2017.02.032.
    1. Xing L., Jiang M., Dong L., et al. Cardioprotective effects of the YiQiFuMai injection and isolated compounds on attenuating chronic heart failure via NF-κB inactivation and cytokine suppression. Journal of Ethnopharmacology. 2013;148(1):239–245. doi: 10.1016/j.jep.2013.04.019.
    1. Daskalopoulos E. P., Dufeys C., Bertrand L., Beauloye C., Horman S. AMPK in cardiac fibrosis and repair: actions beyond metabolic regulation. Journal of Molecular and Cellular Cardiology. 2016;91:188–200. doi: 10.1016/j.yjmcc.2016.01.001.
    1. Feng Y.-Q., Ju A.-C., Liu C.-H., Wang T., Yu B.-Y., Qi J. Protective effect of the extract of Yi-Qi-Fu-Mai preparation on hypoxia-induced heart injury in mice. Chinese Journal of Natural Medicines. 2016;14(6):401–406. doi: 10.1016/S1875-5364(16)30035-8.
    1. Li F., Zheng X., Fan X., et al. YiQiFuMai powder injection attenuates ischemia/reperfusion-induced myocardial apoptosis through AMPK activation. Rejuvenation Research. 2016;19(6):495–508. doi: 10.1089/rej.2015.1801.
    1. National Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China. Bejing, China: China Medical Science and Technology Press; 2015.
    1. Cai X., du J., Li L., et al. Clinical metabolomics analysis of therapeutic mechanism of Tongmai Yangxin pill on stable angina. Journal of Chromatography B. 2018;1100-1101:106–112. doi: 10.1016/j.jchromb.2018.09.038.
    1. Tao S., Liang X. Y., Wang Y., Wang Y. Screening of active compounds with myocardial protective effects from Tongmai Yangxin pill. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2015;44(2):145–153.
    1. Wang Y., Zhang L., Xiao Y., Zhang L., Xing Y. Effect of Tongmai Yangxin pills on inflammatory factors and oxidative stress of cardiomyocyte injury induced by hypoxia. Journal of Traditional Chinese Medicine. 2011;52(4):326–328.
    1. Kumari K., Augusti K. T. Lipid lowering effect of S-methyl cysteine sulfoxide from Allium cepa Linn in high cholesterol diet fed rats. Journal of Ethnopharmacology. 2007;109(3):367–371. doi: 10.1016/j.jep.2006.07.045.
    1. Son I. S., Kim J. H., Sohn H. Y., Son K. H., Kim J.-S., Kwon C.-S. Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high-cholesterol fed rats. Bioscience, Biotechnology, and Biochemistry. 2007;71(12):3063–3071. doi: 10.1271/bbb.70472.
    1. Xia W., Sun C., Zhao Y., Wu L. Hypolipidemic and antioxidant activities of Sanchi (Radix Notoginseng) in rats fed with a high fat diet. Phytomedicine. 2011;18(6):516–520. doi: 10.1016/j.phymed.2010.09.007.
    1. Li Q., Ye Y. H., Xing Q. Y. Progress on the water-soluble constituents and its pharmacology of Panax notoginseng. Chemical Research in Chinese Universities. 1996;17(12):1886–1892.
    1. Wang X. J., Feng P. Antioxidant activity of qizhu tang. Acta Pharmacologica Sinica. 2000;21(12):1141–1144.
    1. Basu A., Penugonda K. Pomegranate juice: a heart-healthy fruit juice. Nutrition Reviews. 2009;67(1):49–56. doi: 10.1111/j.1753-4887.2008.00133.x.
    1. Hassanpour Fard M., Ghule A. E., Bodhankar S. L., Dikshit M. Cardioprotective effect of whole fruit extract of pomegranate on doxorubicin-induced toxicity in rat. Pharmaceutical Biology. 2011;49(4):377–382. doi: 10.3109/13880209.2010.517758.
    1. Aviram M., Rosenblat M., Gaitini D., et al. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clinical Nutrition. 2004;23(3):423–433. doi: 10.1016/j.clnu.2003.10.002.
    1. Al-Jarallah A., Igdoura F., Zhang Y., et al. The effect of pomegranate extract on coronary artery atherosclerosis in SR-BI/APOE double knockout mice. Atherosclerosis. 2013;228(1):80–89. doi: 10.1016/j.atherosclerosis.2013.02.025.
    1. Wang L., Nishida H., Ogawa Y., Konishi T. Prevention of oxidative injury in PC12 cells by a traditional Chinese medicine, Shengmai San, as a model of an antioxidant-basedcomposite formula. Biological & Pharmaceutical Bulletin. 2003;26(7):1000–1004. doi: 10.1248/bpb.26.1000.
    1. Yao H. T., Chang Y. W., Chen C. T., Chiang M. T., Chang L., Yeh T. K. Shengmai San reduces hepatic lipids and lipid peroxidation in rats fed on a high-cholesterol diet. Journal of Ethnopharmacology. 2008;116(1):49–57. doi: 10.1016/j.jep.2007.10.043.
    1. You J. S., Huang H. F., Chang Y. L., Lee Y. S. Sheng-Mai-San reduces adriamycin-induced cardiomyopathy in rats. The American Journal of Chinese Medicine. 2006;34(02):295–305. doi: 10.1142/S0192415X06003849.
    1. Forstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nature Clinical Practice. Cardiovascular Medicine. 2008;5(6):338–349. doi: 10.1038/ncpcardio1211.
    1. El-Refaei M. F., Abduljawad S. H., Alghamdi A. H. Alternative medicine in diabetes - role of angiogenesis, oxidative stress, and chronic inflammation. The Review of Diabetic Studies. 2014;11(3-4):231–244. doi: 10.1900/RDS.2014.11.231.
    1. Lopez-Alarcon C., Denicola A. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Analytica Chimica Acta. 2013;763:1–10. doi: 10.1016/j.aca.2012.11.051.
    1. Lee Y.-M., Cheng P.-Y., Chen S.-Y., Chung M.-T., Sheu J.-R. Wogonin suppresses arrhythmias, inflammatory responses, and apoptosis induced by myocardial ischemia/reperfusion in rats. Journal of Cardiovascular Pharmacology. 2011;58(2):133–142. doi: 10.1097/FJC.0b013e31821a5078.
    1. Sanada S., Komuro I., Kitakaze M. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. American Journal of Physiology-Heart and Circulatory Physiology. 2011;301(5):H1723–H1741. doi: 10.1152/ajpheart.00553.2011.
    1. Timmers L., Pasterkamp G., de Hoog V. C., Arslan F., Appelman Y., de Kleijn D. P. V. The innate immune response in reperfused myocardium. Cardiovascular Research. 2012;94(2):276–283. doi: 10.1093/cvr/cvs018.
    1. Yu L.-N., Yu J., Zhang F.-J., et al. Sevoflurane postconditioning reduces myocardial reperfusion injury in rat isolated hearts via activation of PI3K/Akt signaling and modulation of Bcl-2 family proteins. Journal of Zhejiang University Science B. 2010;11(9):661–672. doi: 10.1631/jzus.B1000155.
    1. Luan H.-F., Zhao Z.-B., Zhao Q.-H., Zhu P., Xiu M.-Y., Ji Y. Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Brazilian Journal of Medical and Biological Research. 2012;45(10):898–905. doi: 10.1590/S0100-879X2012007500090.
    1. Dhanasekaran A., Gruenloh S. K., Buonaccorsi J. N., et al. Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. American Journal of Physiology-Heart and Circulatory Physiology. 2008;294(2):H724–H735. doi: 10.1152/ajpheart.00979.2007.
    1. Zhu H., Jia Z., Misra B. R., et al. Nuclear factor E2-related factor 2-dependent myocardiac cytoprotection against oxidative and electrophilic stress. Cardiovascular Toxicology. 2008;8(2):71–85. doi: 10.1007/s12012-008-9016-0.
    1. Zaha V. G., Qi D., Su K. N., et al. AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia. Journal of Molecular and Cellular Cardiology. 2016;91:104–113. doi: 10.1016/j.yjmcc.2015.12.032.
    1. Kim A. S., Miller E. J., Wright T. M., et al. A small molecule AMPK activator protects the heart against ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology. 2011;51(1):24–32. doi: 10.1016/j.yjmcc.2011.03.003.
    1. Khatib R., Joseph P., Briel M., Yusuf S., Healey J. Blockade of the renin–angiotensin–aldosterone system (RAAS) for primary prevention of non-valvular atrial fibrillation: a systematic review and meta analysis of randomized controlled trials. International Journal of Cardiology. 2013;165(1):17–24. doi: 10.1016/j.ijcard.2012.02.009.
    1. Zhang M., Perino A., Ghigo A., Hirsch E., Shah A. M. NADPH oxidases in heart failure: poachers or gamekeepers? Antioxidants & Redox Signaling. 2013;18(9):1024–1041. doi: 10.1089/ars.2012.4550.
    1. Schröder K., Zhang M., Benkhoff S., et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circulation Research. 2012;110(9):1217–1225. doi: 10.1161/CIRCRESAHA.112.267054.
    1. Gullestad L., Ueland T., Vinge L. E., Finsen A., Yndestad A., Aukrust P. Inflammatory cytokines in heart failure: mediators and markers. Cardiology. 2012;122(1):23–35. doi: 10.1159/000338166.
    1. Yang X., Li Y., Li Y., et al. Oxidative stress-mediated atherosclerosis: mechanisms and therapies. Frontiers in Physiology. 2017;8:p. 600. doi: 10.3389/fphys.2017.00600.
    1. Mallika V., Goswami B., Rajappa M. Atherosclerosis pathophysiology and the role of novel risk factors: a clinicobiochemical perspective. Angiology. 2007;58(5):513–522. doi: 10.1177/0003319707303443.
    1. Lee W. Y. W., Chiu L. C. M., Yeung J. H. K. Cytotoxicity of major Tanshinones isolated from Danshen (Salvia miltiorrhiza) on HepG2 cells in relation to glutathione perturbation. Food and Chemical Toxicology. 2008;46(1):328–338. doi: 10.1016/j.fct.2007.08.013.

Source: PubMed

3
Abonnieren