Experience in Multiple Sclerosis Patients with COVID-19 and Disease-Modifying Therapies: A Review of 873 Published Cases

Nora Möhn, Franz F Konen, Refik Pul, Christoph Kleinschnitz, Harald Prüss, Torsten Witte, Martin Stangel, Thomas Skripuletz, Nora Möhn, Franz F Konen, Refik Pul, Christoph Kleinschnitz, Harald Prüss, Torsten Witte, Martin Stangel, Thomas Skripuletz

Abstract

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic is a challenge for all participants in the healthcare system. At the beginning of the pandemic, many physicians asked themselves what risk their patients, especially those with chronic diseases, were exposed to. We present an overview of all patients with multiple sclerosis (MS) and SARS-CoV-2 infection published in the literature so far. In total, there are publications on 873 SARS-CoV-2 positive MS patients and information on the outcome can be given for 700 patients. With regard to the different disease modifying therapies (DMTs), by far the most cases were described under anti-CD20 treatment (n = 317). The mortality rate of all MS patients was 4% and a further 3% required invasive or non-invasive ventilation. When looking at the severe and fatal cases, it is particularly noticeable that patients without DMTs, with previous cardiovascular diseases, or with a severe degree of disability are at risk. Immunosuppressive therapy itself does not appear to be a substantial risk factor. Rather, it is reasonable to assume that the therapies could be protective, either directly, by mitigating the cytokine storm, or indirectly, by reducing the disease activity of MS.

Keywords: COVID-19; SARS-CoV-2 pandemic; disease-modifying therapies; multiple sclerosis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Distribution of the respective disease modifying therapies among the published SARS-CoV-2 positive multiple sclerosis patients. COVID-19: coronavirus disease 2019; DMF: dimethyl-fumarate; MS: multiple sclerosis.
Figure 2
Figure 2
Overview of the outcome of all published SARS-CoV-2 positive MS patients in whom the outcome is known. COVID-19: coronavirus disease 2019; MS: multiple sclerosis.
Figure 3
Figure 3
Distribution of the respective outcomes depending on the disease modifying therapies. (a) Distribution of different outcomes per DMT; (b) Number of non-hospitalized, hospitalized, ventilated, and deceased patients. DMF: dimethyl-fumarate; Hospit.: hospitalized; ICU: intensive care unit; NIV: non-invasive ventilation. Others: stem cell therapy (n = 5), immunoglobulins (n = 4), mycophenolate mofetil (n = 3), azathioprine (n = 1), cyclophosphamide (n = 1), methotrexate (n = 1).

References

    1. Dong E., Du H., Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020;20:533–534. doi: 10.1016/S1473-3099(20)30120-1.
    1. Force A.D.T., Ranieri V.M., Rubenfeld G.D., Thompson B.T., Ferguson N.D., Caldwell E., Fan E., Camporota L., Slutsky A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA. 2012;307:2526–2533. doi: 10.1001/jama.2012.5669.
    1. Chu D.K.W., Pan Y., Cheng S.M.S., Hui K.P.Y., Krishnan P., Liu Y., Ng D.Y.M., Wan C.K.C., Yang P., Wang Q., et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 2020;66:549–555. doi: 10.1093/clinchem/hvaa029.
    1. Ashour H.M., Elkhatib W.F., Rahman M.M., Elshabrawy H.A. Insights into the Recent 2019 Novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens. 2020;9:186. doi: 10.3390/pathogens9030186.
    1. Moore J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020;368:473–474. doi: 10.1126/science.abb8925.
    1. Zhang C., Wu Z., Li J.W., Zhao H., Wang G.Q. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents. 2020;55:105954. doi: 10.1016/j.ijantimicag.2020.105954.
    1. Grifoni A., Weiskopf D., Ramirez S.I., Mateus J., Dan J.M., Moderbacher C.R., Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S., et al. Targets of T Cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181:1489–1501.e15. doi: 10.1016/j.cell.2020.05.015.
    1. Park M.D. Macrophages: A Trojan horse in COVID-19? Nat. Rev. Immun. 2020;20:351. doi: 10.1038/s41577-020-0317-2.
    1. Yuki K., Fujiogi M., Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin. Immun. 2020;215:108427. doi: 10.1016/j.clim.2020.108427.
    1. Goumenou M., Sarigiannis D., Tsatsakis A., Anesti O., Docea A.O., Petrakis D., Tsoukalas D., Kostoff R., Rakitskii V., Spandidos D.A., et al. COVID19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review) Mol. Med. Rep. 2020;22:20–32. doi: 10.3892/mmr.2020.11079.
    1. Centers for Disease Control and Prevention (CDC) [(accessed on 18 October 2020)]; Available online: .
    1. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020;8:475–481. doi: 10.1016/S2213-2600(20)30079-5.
    1. Mantero V., Abate L., Balgera R., Basilico P., Salmaggi A., Cordano C. Assessing the susceptibility to acute respiratory illness COVID-19-related in a cohort of multiple sclerosis patients. Mult. Scler. Relat. Disord. 2020;46:102453. doi: 10.1016/j.msard.2020.102453.
    1. Park J.E., Jung S., Kim A., Park J.E. MERS transmission and risk factors: A systematic review. BMC Public Health. 2018;18:574. doi: 10.1186/s12889-018-5484-8.
    1. Chan K.S., Zheng J.P., Mok Y.W., Li Y.M., Liu Y.N., Chu C.M., Ip M.S. SARS: Prognosis, outcome and sequelae. Respirology. 2003;8:S36–S40. doi: 10.1046/j.1440-1843.2003.00522.x.
    1. Mohn N., Pul R., Kleinschnitz C., Pruss H., Witte T., Stangel M., Skripuletz T. Implications of COVID-19 outbreak on immune therapies in multiple sclerosis patients-lessons learned from SARS and MERS. Front. Immunol. 2020;11:1059. doi: 10.3389/fimmu.2020.01059.
    1. Owji H., Negahdaripour M., Hajighahramani N. Immunotherapeutic approaches to curtail COVID-19. Int. Immunopharmacol. 2020;88:106924. doi: 10.1016/j.intimp.2020.106924.
    1. Louapre C., Collongues N., Stankoff B., Giannesini C., Papeix C., Bensa C., Deschamps R., Creange A., Wahab A., Pelletier J., et al. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and Multiple Sclerosis. JAMA Neurol. 2020;77:1079–1088. doi: 10.1001/jamaneurol.2020.2581.
    1. Parrotta E., Kister I., Charvet L., Sammarco C., Saha V., Charlson R.E., Howard J., Gutman J.M., Gottesman M., Abou-Fayssal N., et al. COVID-19 outcomes in MS: Observational study of early experience from NYU Multiple Sclerosis Comprehensive Care Center. Neurol. R Neuroimmunol. Neuroinflamm. 2020;7 doi: 10.1212/NXI.0000000000000835.
    1. Aguirre C., Meca-Lallana V., Barrios-Blandino A., Del Rio B., Vivancos J. Covid-19 in a patient with multiple sclerosis treated with natalizumab: May the blockade of integrins have a protective role? Mult. Scler. Relat. Disord. 2020;44:102250. doi: 10.1016/j.msard.2020.102250.
    1. Arca K.N., Starling A.J. Treatment-refractory headache in the setting of COVID-19 pneumonia: Migraine or meningoencephalitis? Case Report. SN Compr. Clin. Med. 2020:1–4. doi: 10.1007/s42399-020-00369-y.
    1. Barzegar M., Mirmosayyeb O., Nehzat N., Sarrafi R., Khorvash F., Maghzi A.H., Shaygannejad V. COVID-19 infection in a patient with multiple sclerosis treated with fingolimod. Neurol. R Neuroimmunol. Neuroinflamm. 2020;7 doi: 10.1212/NXI.0000000000000753.
    1. Carandini T., Pietroboni A.M., Sacchi L., De Riz M.A., Pozzato M., Arighi A., Fumagalli G.G., Martinelli Boneschi F., Galimberti D., Scarpini E. Alemtuzumab in multiple sclerosis during the COVID-19 pandemic: A mild uncomplicated infection despite intense immunosuppression. Mult. Scler. 2020;26:1268–1269. doi: 10.1177/1352458520926459.
    1. Celius E.G. Normal antibody response after COVID-19 during treatment with cladribine. Mult. Scler. Relat. Disord. 2020;46:102476. doi: 10.1016/j.msard.2020.102476.
    1. Chiarini M., Paghera S., Moratto D., Rossi N., Giacomelli M., Badolato R., Capra R., Imberti L. Immunologic characterization of a immunosuppressed multiple sclerosis patient that recovered from SARS-CoV-2 infection. J. Neuroimmunol. 2020;345:577282. doi: 10.1016/j.jneuroim.2020.577282.
    1. Ciardi M.R., Zingaropoli M.A., Pasculli P., Perri V., Tartaglia M., Valeri S., Russo G., Conte A., Mastroianni C.M. The peripheral blood immune cell profile in a teriflunomide-treated multiple sclerosis patient with COVID-19 pneumonia. J. Neuroimmunol. 2020;346:577323. doi: 10.1016/j.jneuroim.2020.577323.
    1. Conte W.L. Attenuation of antibody response to SARS-CoV-2 in a patient on ocrelizumab with hypogammaglobulinemia. Mult. Scler. Relat. Disord. 2020;44:102315. doi: 10.1016/j.msard.2020.102315.
    1. De Angelis M., Petracca M., Lanzillo R., Brescia Morra V., Moccia M. Mild or no COVID-19 symptoms in cladribine-treated multiple sclerosis: Two cases and implications for clinical practice. Mult. Scler. Relat. Disord. 2020;45:102452. doi: 10.1016/j.msard.2020.102452.
    1. Dersch R., Wehrum T., Fahndrich S., Engelhardt M., Rauer S., Berger B. COVID-19 pneumonia in a multiple sclerosis patient with severe lymphopenia due to recent cladribine treatment. Mult. Scler. 2020;26:1264–1266. doi: 10.1177/1352458520943783.
    1. Devogelaere J., D’Hooghe M.B., Vanderhauwaert F., D’Haeseleer M. Coronavirus disease 2019: Favorable outcome in an immunosuppressed patient with multiple sclerosis. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2020;41:1981–1983. doi: 10.1007/s10072-020-04522-2.
    1. Fernandez-Diaz E., Gracia-Gil J., Garcia-Garcia J.G., Palao M., Romero-Sanchez C.M., Segura T. COVID-19 and multiple sclerosis: A description of two cases on alemtuzumab. Mult. Scler. Relat. Disord. 2020;45:102402. doi: 10.1016/j.msard.2020.102402.
    1. Fiorella C., Lorna G. COVID-19 in a multiple sclerosis (MS) patient treated with alemtuzumab: Insight to the immune response after COVID. Mult. Scler. Relat. Disord. 2020;46:102447. doi: 10.1016/j.msard.2020.102447.
    1. Foerch C., Friedauer L., Bauer B., Wolf T., Adam E.H. Severe COVID-19 infection in a patient with multiple sclerosis treated with fingolimod. Mult. Scler. Relat. Disord. 2020;42:102180. doi: 10.1016/j.msard.2020.102180.
    1. Gemcioglu E., Davutoglu M., Ozdemir E.E., Erden A. Are type 1 interferons treatment in Multiple Sclerosis as a potential therapy against COVID-19? Mult. Scler. Relat. Disord. 2020;42:102196. doi: 10.1016/j.msard.2020.102196.
    1. Ghajarzadeh M., Mirmosayyeb O., Barzegar M., Nehzat N., Vaheb S., Shaygannejad V., Maghzi A.H. Favorable outcome after COVID-19 infection in a multiple sclerosis patient initiated on ocrelizumab during the pandemic. Mult. Scler. Relat. Disord. 2020;43:102222. doi: 10.1016/j.msard.2020.102222.
    1. Gomez-Mayordomo V., Montero-Escribano P., Matias-Guiu J.A., Gonzalez-Garcia N., Porta-Etessam J., Matias-Guiu J. Clinical exacerbation of SARS-CoV2 infection after fingolimod withdrawal. J. Med. Virol. 2020 doi: 10.1002/jmv.26279.
    1. Guevara C., Villa E., Cifuentes M., Naves R., Grazia J. Mild COVID-19 infection in a patient with multiple sclerosis and severe depletion of T-lymphocyte subsets due to alemtuzumab. Mult. Scler. Relat. Disord. 2020;44:102314. doi: 10.1016/j.msard.2020.102314.
    1. Iannetta M., Cesta N., Stingone C., Malagnino V., Teti E., Vitale P., De Simone G., Rossi B., Ansaldo L., Compagno M., et al. Mild clinical manifestations of SARS-CoV-2 related pneumonia in two patients with multiple sclerosis under treatment with ocrelizumab. Mult. Scler. Relat. Disord. 2020;45:102442. doi: 10.1016/j.msard.2020.102442.
    1. Lucchini M., Bianco A., Del Giacomo P., De Fino C., Nociti V., Mirabella M. Is serological response to SARS-CoV-2 preserved in MS patients on ocrelizumab treatment? A case report. Mult. Scler. Relat. Disord. 2020;44:102323. doi: 10.1016/j.msard.2020.102323.
    1. Maghzi A.H., Houtchens M.K., Preziosa P., Ionete C., Beretich B.D., Stankiewicz J.M., Tauhid S., Cabot A., Berriosmorales I., Schwartz T.H.W., et al. COVID-19 in teriflunomide-treated patients with multiple sclerosis. J. Neurol. 2020;267:2790–2796. doi: 10.1007/s00415-020-09944-8.
    1. Bollo L., Guerra T., Bavaro D.F., Monno L., Saracino A., Angarano G., Paolicelli D., Trojano M., Iaffaldano P. Seroconversion and indolent course of COVID-19 in patients with multiple sclerosis treated with fingolimod and teriflunomide. J. Neurol. Sci. 2020;416:117011. doi: 10.1016/j.jns.2020.117011.
    1. Borriello G., Ianniello A. COVID-19 occurring during Natalizumab treatment: A case report in a patient with extended interval dosing approach. Mult. Scler. Relat. Disord. 2020;41:102165. doi: 10.1016/j.msard.2020.102165.
    1. Mallucci G., Zito A., Fabbro B.D., Bergamaschi R. Asymptomatic SARS-CoV-2 infection in two patients with multiple sclerosis treated with fingolimod. Mult. Scler. Relat. Disord. 2020;45:102414. doi: 10.1016/j.msard.2020.102414.
    1. Meca-Lallana V., Aguirre C., Beatrizdel R., Cardenoso L., Alarcon T., Vivancos J. COVID-19 in 7 multiple sclerosis patients in treatment with ANTI-CD20 therapies. Mult. Scler. Relat. Disord. 2020;44:102306. doi: 10.1016/j.msard.2020.102306.
    1. Mohn N., Saker F., Bonda V., Respondek G., Bachmann M., Stoll M., Wattjes M.P., Stangel M., Skripuletz T. Mild COVID-19 symptoms despite treatment with teriflunomide and high-dose methylprednisolone due to multiple sclerosis relapse. J. Neurol. 2020;267:2803–2805. doi: 10.1007/s00415-020-09921-1.
    1. Novi G., Mikulska M., Briano F., Toscanini F., Tazza F., Uccelli A., Inglese M. COVID-19 in a MS patient treated with ocrelizumab: Does immunosuppression have a protective role? Mult. Scler. Relat. Disord. 2020;42:102120. doi: 10.1016/j.msard.2020.102120.
    1. Rimmer K., Farber R., Thakur K., Braverman G., Podolsky D., Sutherland L., Migliore C., Ryu Y.K., Levin S., De Jager P.L., et al. Fatal COVID-19 in an MS patient on natalizumab: A case report. Mult. Scler. J. Exp. Transl. Clin. 2020;6:2055217320942931. doi: 10.1177/2055217320942931.
    1. Suwanwongse K., Shabarek N. Benign course of COVID-19 in a multiple sclerosis patient treated with Ocrelizumab. Mult. Scler. Relat. Disord. 2020;42:102201. doi: 10.1016/j.msard.2020.102201.
    1. Thornton J.R., Harel A. Negative SARS-CoV-2 antibody testing following COVID-19 infection in Two MS patients treated with ocrelizumab. Mult. Scler. Relat. Disord. 2020;44:102341. doi: 10.1016/j.msard.2020.102341.
    1. Valencia-Sanchez C., Wingerchuk D.M. A fine balance: Immunosuppression and immunotherapy in a patient with multiple sclerosis and COVID-19. Mult. Scler. Relat. Disord. 2020;42:102182. doi: 10.1016/j.msard.2020.102182.
    1. Woo M.S., Steins D., Haussler V., Kohsar M., Haag F., Elias-Hamp B., Heesen C., Lutgehetmann M., Schulze Zur Wiesch J., Friese M.A. Control of SARS-CoV-2 infection in rituximab-treated neuroimmunological patients. J. Neurol. 2020:1–3. doi: 10.1007/s00415-020-10046-8.
    1. Wurm H., Attfield K., Iversen A.K., Gold R., Fugger L., Haghikia A. Recovery from COVID-19 in a B-cell-depleted multiple sclerosis patient. Mult. Scler. 2020;26:1261–1264. doi: 10.1177/1352458520943791.
    1. Bowen J.D., Brink J., Brown T.R., Lucassen E.B., Smoot K., Wundes A., Repovic P. COVID-19 in MS: Initial observations from the Pacific Northwest. Neurol. R Neuroimmunol. Neuroinflamm. 2020;7 doi: 10.1212/NXI.0000000000000783.
    1. Matias-Guiu J., Montero-Escribano P., Pytel V., Porta-Etessam J., Matias-Guiu J.A. Potential COVID-19 infection in patients with severe multiple sclerosis treated with alemtuzumab. Mult. Scler. Relat. Disord. 2020;44:102297. doi: 10.1016/j.msard.2020.102297.
    1. Mantero V., Baroncini D., Balgera R., Guaschino C., Basilico P., Annovazzi P., Zaffaroni M., Salmaggi A., Cordano C. Mild COVID-19 infection in a group of teriflunomide-treated patients with multiple sclerosis. J. Neurol. 2020:1–2. doi: 10.1007/s00415-020-10196-9.
    1. Mantero V., Abate L., Basilico P., Balgera R., Salmaggi A., Nourbakhsh B., Cordano C. COVID-19 in dimethyl fumarate-treated patients with multiple sclerosis. J. Neurol. 2020:1–3. doi: 10.1007/s00415-020-10015-1.
    1. Sahraian M.A., Azimi A., Navardi S., Rezaeimanesh N., Naser Moghadasi A. Evaluation of COVID-19 infection in patients with Neuromyelitis optica spectrum disorder (NMOSD): A report from Iran. Mult. Scler. Relat. Disord. 2020;44:102245. doi: 10.1016/j.msard.2020.102245.
    1. Ciampi E., Uribe-San-Martin R., Carcamo C. COVID-19 pandemic: The experience of a multiple sclerosis centre in Chile. Mult. Scler. Relat. Disord. 2020;42:102204. doi: 10.1016/j.msard.2020.102204.
    1. Loonstra F.C., Hoitsma E., van Kempen Z.L., Killestein J., Mostert J.P. COVID-19 in multiple sclerosis: The Dutch experience. Mult. Scler. 2020;26:1256–1260. doi: 10.1177/1352458520942198.
    1. Barzegar M., Mirmosayyeb O., Ghajarzadeh M., Nehzat N., Vaheb S., Shaygannejad V., Vosoughi R. Characteristics of COVID-19 disease in multiple sclerosis patients. Mult. Scler. Relat. Disord. 2020;45:102276. doi: 10.1016/j.msard.2020.102276.
    1. Crescenzo F., Marastoni D., Bovo C., Calabrese M. Frequency and severity of COVID-19 in multiple sclerosis: A short single-site report from northern Italy. Mult. Scler. Relat. Disord. 2020;44:102372. doi: 10.1016/j.msard.2020.102372.
    1. Hughes R., Pedotti R., Koendgen H. COVID-19 in persons with multiple sclerosis treated with ocrelizumab—A pharmacovigilance case series. Mult. Scler. Relat. Disord. 2020;42:102192. doi: 10.1016/j.msard.2020.102192.
    1. Safavi F., Nourbakhsh B., Azimi A.R. B-cell depleting therapies may affect susceptibility to acute respiratory illness among patients with multiple sclerosis during the early COVID-19 epidemic in Iran. Mult. Scler. Relat. Disorders. 2020;43:102195. doi: 10.1016/j.msard.2020.102195.
    1. Rejdak K., Grieb P. Adamantanes might be protective from COVID-19 in patients with neurological diseases: Multiple sclerosis, parkinsonism and cognitive impairment. Mult. Scler. Relat. Disord. 2020;42:102163. doi: 10.1016/j.msard.2020.102163.
    1. Nesbitt C., Rath L., Yeh W.Z., Zhong M., Wesselingh R., Monif M., Richards J., Minh V.B., Jokubaitis V.G., Skibina O., et al. MSCOVID19: Using social media to achieve rapid dissemination of health information. Mult. Scler. Relat. Disord. 2020;45:102338. doi: 10.1016/j.msard.2020.102338.
    1. Ciampi E., Uribe-San-Martin R., Soler B., Fernandez R., Garcia P., Navarrete-Asenjo C., Tirapegui J.M., Torres R., Polanco J., Suarez F., et al. COVID-19 in MS and NMOSD: A multicentric online national survey in Chile. Mult. Scler. Relat. Disord. 2020;45:102392. doi: 10.1016/j.msard.2020.102392.
    1. Montero-Escribano P., Matias-Guiu J., Gomez-Iglesias P., Porta-Etessam J., Pytel V., Matias-Guiu J.A. Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: A case series of 60 patients from Madrid, Spain. Mult. Scler. Relat. Disord. 2020;42:102185. doi: 10.1016/j.msard.2020.102185.
    1. Olivares Gazca J.C., Gomez Almaguer D., Gale R.P., Ruiz Arguelles G.J. Melange interessante: COVID-19, autologous transplants and multiple sclerosis. Hematology. 2020;25:320. doi: 10.1080/16078454.2020.1802931.
    1. Maillart E., Papeix C., Lubetzki C., Roux T., Pourcher V., Louapre C. Beyond COVID-19: DO MS/NMO-SD patients treated with anti-CD20 therapies develop SARS-CoV2 antibodies? Mult. Scler. Relat. Disord. 2020;46:102482. doi: 10.1016/j.msard.2020.102482.
    1. Jack D., Nolting A., Galazka A. Favorable outcomes after COVID-19 infection in multiple sclerosis patients treated with cladribine tablets. Mult. Scler. Relat. Disord. 2020;46:102469. doi: 10.1016/j.msard.2020.102469.
    1. Louapre C., Maillart E., Roux T., Pourcher V., Bussone G., Lubetzki C., Papeix C. Patients with MS treated with immunosuppressive agents: Across the COVID-19 spectrum. Rev. Neurol. 2020;176:523–525. doi: 10.1016/j.neurol.2020.04.009.
    1. Talotta R., Robertson E. Autoimmunity as the comet tail of COVID-19 pandemic. World J. Clin. Cases. 2020;8:3621–3644. doi: 10.12998/wjcc.v8.i17.3621.
    1. Galeotti C., Bayry J. Autoimmune and inflammatory diseases following COVID-19. Nat. Rev. Rheumatol. 2020;16:413–414. doi: 10.1038/s41584-020-0448-7.
    1. Cardone M., Yano M., Rosenberg A.S., Puig M. Lessons learned to date on COVID-19 Hyperinflammatory Syndrome: Considerations for interventions to mitigate SARS-CoV-2 viral infection and detrimental hyperinflammation. Front. Immunol. 2020;11:1131. doi: 10.3389/fimmu.2020.01131.
    1. Hu G., Christman J.W. Editorial: Alveolar macrophages in lung inflammation and resolution. Front. Immunol. 2019;10:2275. doi: 10.3389/fimmu.2019.02275.
    1. Joshi N., Walter J.M., Misharin A.V. Alveolar macrophages. Cell Immunol. 2018;330:86–90. doi: 10.1016/j.cellimm.2018.01.005.
    1. Wang C., Xie J., Zhao L., Fei X., Zhang H., Tan Y., Nie X., Zhou L., Liu Z., Ren Y., et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine. 2020;57:102833. doi: 10.1016/j.ebiom.2020.102833.
    1. Kloc M., Ghobrial R.M. The multiple sclerosis (MS) drugs as a potential treatment of ARDS in COVID-19 patients. Mult. Scler. Relat. Disord. 2020;45:102437. doi: 10.1016/j.msard.2020.102437.
    1. Li X., Xu S., Yu M., Wang K., Tao Y., Zhou Y., Shi J., Zhou M., Wu B., Yang Z., et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J. Allergy Clin. Immunol. 2020;146:110–118. doi: 10.1016/j.jaci.2020.04.006.
    1. Suleyman G., Fadel R.A., Malette K.M., Hammond C., Abdulla H., Entz A., Demertzis Z., Hanna Z., Failla A., Dagher C., et al. Clinical characteristics and morbidity associated with coronavirus disease 2019 in a series of patients in metropolitan Detroit. JAMA Netw. Open. 2020;3:e2012270. doi: 10.1001/jamanetworkopen.2020.12270.
    1. Yu C., Lei Q., Li W., Wang X., Li W., Liu W. Epidemiological and clinical characteristics of 1663 hospitalized patients infected with COVID-19 in Wuhan, China: A single-center experience. J. Infect. Public Health. 2020;13:1202–1209. doi: 10.1016/j.jiph.2020.07.002.
    1. Petrakis D., Margina D., Tsarouhas K., Tekos F., Stan M., Nikitovic D., Kouretas D., Spandidos D.A., Tsatsakis A. Obesity a risk factor for increased COVID19 prevalence, severity and lethality (Review) Mol. Med. Rep. 2020;22:9–19. doi: 10.3892/mmr.2020.11127.
    1. Scribano M.L. Why Do Immunosuppressed patients with inflammatory bowel disease not seem to be at a higher risk of COVID-19? Dig. Dis. Sci. 2020:1–10. doi: 10.1007/s10620-020-06624-5.
    1. Pablos J.L., Galindo M., Carmona L., Lledo A., Retuerto M., Blanco R., Gonzalez-Gay M.A., Martinez-Lopez D., Castrejon I., Alvaro-Gracia J.M., et al. Clinical outcomes of hospitalised patients with COVID-19 and chronic inflammatory and autoimmune rheumatic diseases: A multicentric matched cohort study. Ann. Rheum. Dis. 2020;79:1544–1549. doi: 10.1136/annrheumdis-2020-218296.
    1. Freites Nunez D.D., Leon L., Mucientes A., Rodriguez-Rodriguez L., Font Urgelles J., Madrid Garcia A., Colomer J.I., Jover J.A., Fernandez-Gutierrez B., Abasolo L. Risk factors for hospital admissions related to COVID-19 in patients with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 2020;79:1393–1399. doi: 10.1136/annrheumdis-2020-217984.

Source: PubMed

3
Abonnieren