Efficacy and safety of iron isomaltoside (Monofer(®)) in the management of patients with iron deficiency anemia

Philip A Kalra, Sunil Bhandari, Philip A Kalra, Sunil Bhandari

Abstract

New intravenous (IV) iron preparations should ideally be capable of delivering a wide dosing range to allow iron correction in a single or low number of visits, a rapid infusion (doses up to 1,000 mg must be administered over more than 15 minutes and doses exceeding 1,000 mg must be administered over 30 minutes or more), and minimal potential side effects including low catalytic/labile iron release with minimal risk of anaphylaxis. Furthermore, they should be convenient for the patient and health-care professional, and cost effective for the health-care system. The intention behind the development of iron isomaltoside (Monofer(®)) was to fulfill these requirements. Iron isomaltoside has been shown to be effective in treating iron deficiency anemia across multiple therapeutic patient groups and compared to placebo, IV iron sucrose, and oral iron. Iron isomaltoside consists of iron and a carbohydrate moiety where the iron is tightly bound in a matrix structure. It has a low immunogenic potential, a low potential to release labile iron, and does not appear to be associated with clinically significant hypophosphatemia. Due to the structure of iron isomaltoside, it can be administered in high doses with a maximum single dosage of 20 mg/kg body weight. Clinical trials and observational studies of iron isomaltoside show that it is an effective and well-tolerated treatment of anemia across different therapeutic areas with a favorable safety profile.

Keywords: high dose; hypophosphatemia; intact fibroblast growth factor 23; iron deficiency anemia; iron isomaltoside; iron treatment.

References

    1. Mehdi U, Toto RD. Anemia, diabetes, and chronic kidney disease. Diabetes Care. 2009;32(7):1320–1326.
    1. Groopman JE, Itri LM. Chemotherapy-induced anemia in adults: incidence and treatment. J Natl Cancer Inst. 1999;91(19):1616–1634.
    1. Steinmetz HT. The role of intravenous iron in the treatment of anemia in cancer patients. Ther Adv Hematol. 2012;3(3):177–191.
    1. Dignass AU, Gasche C, Bettenworth D, et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J Crohns Colitis. 2015;9(3):211–222.
    1. Henry DH. The role of intravenous iron in cancer-related anemia. Oncology (Williston Park) 2006;20(8 Suppl 6):21–24.
    1. KDIGO KDIGO clinical practice guideline for anemia in chronic kidney disease. [Accessed November 13, 2015];Kidney Int. 2012 2(4) Available from:
    1. Gasche C, Berstad A, Befrits R, et al. Guidelines on the diagnosis and management of iron deficiency and anemia in inflammatory bowel diseases. Inflamm Bowel Dis. 2007;13(12):1545–1553.
    1. Jahn MR, Andreasen HB, Futterer S, et al. A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer®), a new intravenous iron preparation and its clinical implications. Eur J Pharm Biopharm. 2011;78(3):480–491.
    1. Fell LH, Zawada AM, Rogacev KS, Seiler S, Fliser D, Heine GH. Distinct immunologic effects of different intravenous iron preparations on monocytes. Nephrol Dial Transplant. 2014;29(4):809–822.
    1. Fell LH, Zawada AM, Seiler S, Untersteller K, Fliser D, Heine GH. Impact of individual IV iron preparations on differentiation of macrophages and dendritic cells [poster FO014]; Poster presented at: 52nd Congress of ERA-EDTA; May 28–31, 2015; London, UK.
    1. Iron Isomaltoside 1000 (Monofer®) [summary of product characteristics] Holbaek, Denmark: Pharmacosmos A/S; 2014.
    1. Nordfjeld K, Andreasen H, Thomsen LL. Pharmacokinetics of iron isomaltoside 1000 in patients with inflammatory bowel disease. Drug Des Devel Ther. 2012;6:43–51.
    1. Gupta DR, Larson DS, Thomsen LL, Coyne DW. Pharmacokinetics of iron isomaltoside 1000 in patients with stage 5 chronic kidney disease on dialysis therapy. J Drug Metab Toxicol. 2013;4:152.
    1. Wikström B, Bhandari S, Barany P, et al. Iron isomaltoside 1000: a new intravenous iron for treating iron deficiency in chronic kidney disease. J Nephrol. 2011;24(5):589–596.
    1. Bhandari S, Kalra PA, Kothari J, et al. A randomized, open-label trial of iron isomaltoside 1000 (Monofer®) compared with iron sucrose (Venofer®) as maintenance therapy in haemodialysis patients. Nephrol Dial Transplant. 2015;30(9):1577–1589.
    1. Kalra PA, Bhandari S, Saxena S, et al. A randomized trial of iron isomaltoside 1000 versus oral iron in non-dialysis-dependent chronic kidney disease patients with anaemia. Nephrol Dial Transplant. 2015 2015 Aug 6; Epub.
    1. Hildebrandt PR, Bruun NE, Nielsen OW, et al. Effects of administration of iron isomaltoside 1000 in patients with chronic heart failure. A pilot study. Transfus Altern Transfus Med. 2010;11(4):131–137.
    1. Reinisch W, Staun M, Tandon RK, et al. A randomized, open-label, non-inferiority study of intravenous iron isomaltoside 1,000 (Monofer) compared with oral iron for treatment of anemia in IBD (PROCEED) Am J Gastroenterol. 2013;108(12):1877–1888.
    1. Reinisch W, Altorjay I, Zsigmond F, et al. A 1-year trial of repeated high-dose intravenous iron isomaltoside 1000 to maintain stable hemoglobin levels in inflammatory bowel disease. Scand J Gastroenterol. 2015;50(10):1226–1233.
    1. Dahlerup J, Lindgren S. High dose intravenous iron isomaltoside 1000 in patients with inflammatory bowel disease – the PROMISE trial; Poster presenter at: 10th Congress of the European Crohn’s and Colitis Organisation (ECCO); February 18–21, 2015; Barcelona, Spain.
    1. Birgegård G, Henry D, Thomsen LL, Auerbach M. Intravenous iron isomaltoside 1000 (Monofer®) as mono therapy in comparison with oral iron sulphate in patients with non-myeloid malignancies associated with chemotherapy induced anaemia (CIA); Abstract presented at: The MASCC/ISOO Annual Meeting on Supportive Care in Cancer; June 25–27, 2015; Copenhagen, Denmark.
    1. Johansson PI, Rasmussen AS, Thomsen LL. Intravenous iron isomaltoside 1000 (Monofer®) reduces postoperative anaemia in preoperatively non-anaemic patients undergoing elective or subacute coronary artery bypass graft, valve replacement or a combination thereof: a randomized double-blind placebo-controlled clinical trial (the PROTECT trial) Vox Sang. 2015;109(3):257–266.
    1. Holm C, Thomsen LL, Norgaard A, Langhoff-Roos J. Intravenous iron isomaltoside 1000 (Monofer) administered by a high single dose infusion or standard medical care for the treatemt of fatigue in women after postpartum haemorrhage: a rondomized controlled trial. Int J Gynecol Obstet. 2015;131(Suppl 5):E118.
    1. Wikstrom B, Bhandari S, Barany P, Kalra PA, Ladefoged S, Wilske J. Monofer, a novel intravenous iron oligosaccharide for treatment of iron deficiency in patients with chronic kidney disease (CKD) [poster M560]; Poster presented at: World Congress of Nephrology; May 22–26, 2009; Milan, Italy.
    1. Leistikow F, Walper A, Ammer R, Hellmann B. Prospective observational study of the efficacy, safety and tolerability of iron isomaltoside 1000 in the treatment of iron deficiency anemia in patients with chronic renal failure; Nephrol Dial Transplant; 2015. pp. iii201–iii202.
    1. Kulnigg S, Stoinov S, Simanenkov V, et al. A novel intravenous iron formulation for treatment of anemia in inflammatory bowel disease: the ferric carboxymaltose (FERINJECT) randomized controlled trial. Am J Gastroenterol. 2008;103(5):1182–1192.
    1. Evstatiev R, Marteau P, Iqbal T, et al. FERGIcor, a randomized controlled trial on ferric carboxymaltose for iron deficiency anemia in inflammatory bowel disease. Gastroenterology. 2011;141(3):846–853.
    1. Gozzard D. When is high-dose intravenous iron repletion needed? Assessing new treatment options. Drug Des Devel Ther. 2011;5:51–60.
    1. Frigstad SO, Rannem T, Hellstrom PM, Hammarlund P, Bonderup O. A Scandinavian prospective observational study of iron isomaltoside 1000 treatment: clinical practice and outcomes in iron deficiency anaemia in patients with IBD [poster P481]; Poster presented at: 10th Congress of the European Crohn’s and Colitis Organisation (ECCO); February 8–21, 2015; Barcelona, Spain.
    1. Holm C, Thomsen LL, Norgaard A, Langhoff-Roos J. Intravenous iron isomaltoside 1000 administered by high single-dose infusions or standard medical care for the treatment of fatigue in women after postpartum haemorrhage: study protocol for a randomised controlled trial. Trials. 2015;16:5.
    1. Holm C, Thomsen LL, Norgaard A, Langhoff-Roos J. Iron content in breast milk from mothers treated with a high single dose infusion of iron isomaltoside 1000 (Monofer) Int J Gynecol Obstet. 2015;131(Suppl 5):E119.
    1. Agarwal R, Vasavada N, Sachs NG, Chase S. Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease. Kidney Int. 2004;65(6):2279–2289.
    1. Zager RA, Johnson AC, Hanson SY. Parenteral iron nephrotoxicity: potential mechanisms and consequences. Kidney Int. 2004;66(1):144–156.
    1. Hardy S, Vandemergel X. Intravenous iron administration and hypophosphatemia in clinical practice. Int J Rheumatol. 2015;2015:468675.
    1. FDA Advisory Committee Briefing Document, Drug Safety and Risk Management Committee Division of Medical Imaging and Hematology Products and Office of Oncology Drug Products and Office of New Drugs, New Drug Application (NDA) 22-054 for Injectafer (Ferric Carboxymaltose) for the treatment of iron deficiency anemia in patients with heavy uterine bleeding or postpartum patients. Feb 1, 2008. [Accessed November 13, 2015]. Available from: .
    1. Sato K, Nohtomi K, Demura H, et al. Saccharated ferric oxide (SFO)-induced osteomalacia: in vitro inhibition by SFO of bone formation and 1,25-dihydroxy-vitamin D production in renal tubules. Bone. 1997;21(1):57–64.
    1. Sato K, Shiraki M. Saccharated ferric oxide-induced osteomalacia in Japan: iron-induced osteopathy due to nephropathy. Endocr J. 1998;45(4):431–439.
    1. Schouten BJ, Hunt PJ, Livesey JH, Frampton CM, Soule SG. FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J Clin Endocrinol Metab. 2009;94(7):2332–2337.
    1. Schouten BJ, Doogue MP, Soule SG, Hunt PJ. Iron polymaltose-induced FGF23 elevation complicated by hypophosphataemic osteomalacia. Ann Clin Biochem. 2009;46(Pt 2):167–169.
    1. Okada M, Imamura K, Iida M, Fuchigami T, Omae T. Hypophosphatemia induced by intravenous administration of Saccharated iron oxide. Klin Wochenschr. 1983;61(2):99–102.
    1. Van Wyck DB, Mangione A, Morrison J, Hadley PE, Jehle JA, Goodnough LT. Large-dose intravenous ferric carboxymaltose injection for iron deficiency anemia in heavy uterine bleeding: a randomized, controlled trial. Transfusion. 2009;49(12):2719–2728.
    1. Wolf M, Koch TA, Bregman DB. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res. 2013;28(8):1793–1803.
    1. U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) Version 4.02. May 28, 2009. [Accessed November 13, 2015]. Available from: .
    1. Blazevic A, Hunze J, Boots JM. Severe hypophosphataemia after intravenous iron administration. Neth J Med. 2014;72(1):49–53.
    1. Vandemergel X, Vandergheynst F. Potentially life-threatening phosphate diabetes induced by ferric carboxymaltose injection: a case report and review of the literature. Case Rep Endocrinol. 2014;2014:843689.
    1. Moore KL, Kildahl-Andersen O, Kildahl-Andersen R, Tjonnfjord GE. Uncommon adverse effect of a common medication. Tidsskr Nor Laegeforen. 2013;133(2):165.
    1. Durham BH, Joseph F, Bailey LM, Fraser WD. The association of circulating ferritin with serum concentrations of fibroblast growth factor-23 measured by three commercial assays. Ann Clin Biochem. 2007;44(Pt 5):463–466.
    1. Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, Econs MJ. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab. 2011;96(11):3541–3549.
    1. Shimizu Y, Tada Y, Yamauchi M, et al. Hypophosphatemia induced by intravenous administration of saccharated ferric oxide: another form of FGF23-related hypophosphatemia. Bone. 2009;45(4):814–816.
    1. Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–4408.
    1. Feng S, Wang J, Zhang Y, Creighton CJ, Ittmann M. FGF23 promotes prostate cancer progression. Oncotarget. 2015;6(19):17291–17301.
    1. Biscetti F, Straface G, Porreca CF, et al. Increased FGF23 serum level is associated with unstable carotid plaque in type 2 diabetic subjects with internal carotid stenosis. Cardiovasc Diabetol. 2015;14(1):139.
    1. Mirza MA, Larsson A, Lind L, Larsson TE. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis. 2009;205(2):385–390.
    1. Cancado RD, Munoz M. Intravenous iron therapy: how far have we come? Rev Bras Hematol Hemoter. 2011;33(6):461–469.
    1. Bhandari S, Naudeer S. Improving efficiency and value in health care. Intravenous iron management for anaemia associated with chronic kidney disease: linking treatment to an outpatient clinic, optimizing service provision and patient choice. J Eval Clin Pract. 2008;14(6):996–1001.
    1. NICE Guideline NG8 Chronic kidney disease: managing anemia. Jun 3, 2015. [Accessed November 13, 2015]. Available from: .
    1. Bhandari S. A hospital-based cost minimization study of the potential financial impact on the UK health care system of introduction of iron isomaltoside 1000. Ther Clin Risk Manag. 2011;7:103–113.
    1. Bhandari S. Update of a comparative analysis of cost minimization following the introduction of newly available intravenous iron therapies in hospital practice. Ther Clin Risk Manag. 2011;7:501–509.
    1. Rampton D, Folkersen J, Fishbane S, et al. Hypersensitivity reactions to intravenous iron: guidance for risk minimization and management. Haematologica. 2014;99(11):1671–1676.

Source: PubMed

3
Abonnieren