Bacterial Topography of the Healthy Human Lower Respiratory Tract

Robert P Dickson, John R Erb-Downward, Christine M Freeman, Lisa McCloskey, Nicole R Falkowski, Gary B Huffnagle, Jeffrey L Curtis, Robert P Dickson, John R Erb-Downward, Christine M Freeman, Lisa McCloskey, Nicole R Falkowski, Gary B Huffnagle, Jeffrey L Curtis

Abstract

Although culture-independent techniques have refuted lung sterility in health, controversy about contamination during bronchoscope passage through the upper respiratory tract (URT) has impeded research progress. We sought to establish whether bronchoscopic sampling accurately reflects the lung microbiome in health and to distinguish between two proposed routes of authentic microbial immigration, (i) dispersion along contiguous respiratory mucosa and (ii) subclinical microaspiration. During bronchoscopy of eight adult volunteers without lung disease, we performed seven protected specimen brushings (PSB) and bilateral bronchoalveolar lavages (BALs) per subject. We amplified, sequenced, and analyzed the bacterial 16S rRNA gene V4 regions by using the Illumina MiSeq platform. Rigorous attention was paid to eliminate potential sources of error or contamination, including a randomized processing order and the inclusion and analysis of exhaustive procedural and sequencing control specimens. Indices of mouth-lung immigration (mouth-lung community similarity, bacterial burden, and community richness) were all significantly greater in airway and alveolar specimens than in bronchoscope contamination control specimens, indicating minimal evidence of pharyngeal contamination. Ecological indices of mouth-lung immigration peaked at or near the carina, as predicted for a primary immigration route of microaspiration. Bacterial burden, diversity, and mouth-lung similarity were greater in BAL than PSB samples, reflecting differences in the sampled surface areas. (This study has been registered at ClinicalTrials.gov under registration no. NCT02392182.)IMPORTANCE This study defines the bacterial topography of the healthy human respiratory tract and provides ecological evidence that bacteria enter the lungs in health primarily by microaspiration, with potential contribution in some subjects by direct dispersal along contiguous mucosa. By demonstrating that contamination contributes negligibly to microbial communities in bronchoscopically acquired specimens, we validate the use of bronchoscopy to investigate the lung microbiome.

Copyright © 2017 Dickson et al.

Figures

FIG 1
FIG 1
Experimental design and conceptual models. Eight subjects without respiratory disease underwent serial sampling of the LRT by bronchoscopy. (A) Sampling methods and locations. Numbers refer to the sampling order. (B) Schematic diagram of method: avoiding contact with airway mucosa for BCC (left), brushing a discrete area of airway mucosa with PSBs (middle), and sampling airways distal to the wedged bronchoscope by BAL (right). (C) Predicted bacterial topographic patterns for three possible routes of microbial immigration: bronchoscope contamination (indices of mouth-lung immigration peak with the BCC and decrease with serial sampling), dispersion along the bronchial mucosa (indices are low in BCC and high in proximal samples and decrease with distance from the pharyngeal source community), and microaspiration (indices are also low in BCC, peak at the main carina, and decrease with subsequent bronchial distance in upright subjects).
FIG 2
FIG 2
Bacterial taxa detected in airway, alveolar, and procedural control specimens. Taxa are listed in decreasing order of mean relative abundance in oral specimens. Red squares represent higher relative abundance (see color key at bottom right). On the right are plots of the kernel density estimates (bandwidth = 0.1) of Bray-Curtis similarity measurements comparing oral-to-specimen similarity (0, entirely different; 1, identical). The oral rinse plot reflects intragroup Bray-Curtis similarity. Plot heights are scaled to the relative density maximum.
FIG 3
FIG 3
Bacterial topography of the healthy human LRT. Mouth-lung bacterial immigration along the LRT was quantified by mouth-lung community similarity (Bray-Curtis similarity) (A), bacterial DNA (log10 number of 16S copies per reaction determined by real-time qPCR) (B), and community richness (number of OTUs per 2,000 sequences) (C). Symbols are as in Fig. 1; Prox, proximal; BI, bronchus intermedius. By all indices, BCCs (triangle) exhibited less evidence of mouth-lung immigration than airway wall PSB specimens (squares) (P ≤ 0.001, paired Student t test) or BAL specimens (circles) (P ≤ 0.01, paired Student t test). Indices of mouth-lung immigration in airway PSB samples are nonlinear, consistent with the topographic pattern predicted in Fig. 1 for microaspiration in upright subjects. Data are mean values ± SEM (n = 8).
FIG 4
FIG 4
Bacterial community membership along the healthy human LRT. The relative abundances of the two most abundant bacterial community members in oral rinse specimens, Prevotella sp. (OTU002) (A) and Veillonella sp. (OTU004) (B), among LRT communities at various locations are graphed. Symbols are as in Fig. 1. Note that the leftmost sample is oral rinse rather than BCC as in Fig. 1C and 2. The relative abundances of both OTUs in LRT PSB samples are nonlinear, peaking at the carina and proximal (Prox.) bronchus intermedius (BI), consistent with the predicted pattern of microaspiration in upright subjects. Data are mean values ± SEM (n = 8).

References

    1. Cotran RS, Kumar V, Collins T, Robbins SL. 1999. Robbins pathologic basis of disease, 6th ed. Saunders, Philadelphia, PA.
    1. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, Huffnagle GB, Curtis JL. 2015. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc 12:821–830. doi:10.1513/AnnalsATS.201501-029OC.
    1. Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. 2016. The microbiome and the respiratory tract. Annu Rev Physiol 78:481–504. doi:10.1146/annurev-physiol-021115-105238.
    1. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt MF, Cookson WO. 2010. Disordered microbial communities in asthmatic airways. PLoS One 5:e8578. doi:10.1371/journal.pone.0008578.
    1. Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, Jablonski K, Kleerup E, Lynch SV, Sodergren E, Twigg H, Young VB, Bassis CM, Venkataraman A, Schmidt TM, Weinstock GM, Lung HIV Microbiome Project . 2013. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 187:1067–1075. doi:10.1164/rccm.201210-1913OC.
    1. Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, Beck JM, Curtis JL, Huffnagle GB. 2015. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio 6:e00037. doi:10.1128/mBio.00037-15.
    1. Segal LN, Alekseyenko AV, Clemente JC, Kulkarni R, Wu B, Gao Z, Chen H, Berger KI, Goldring RM, Rom WN, Blaser MJ, Weiden MD. 2013. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1:19. doi:10.1186/2049-2618-1-19.
    1. Dickson RP, Erb-Downward JR, Freeman CM, Walker N, Scales BS, Beck JM, Martinez FJ, Curtis JL, Lama VN, Huffnagle GB. 2014. Changes in the lung microbiome following lung transplantation include the emergence of two distinct pseudomonas species with distinct clinical associations. PLoS One 9:e97214. doi:10.1371/journal.pone.0097214.
    1. Venkataraman A, Bassis CM, Beck JM, Young VB, Curtis JL, Huffnagle GB, Schmidt TM. 2015. Application of a neutral community model to assess structuring of the human lung microbiome. mBio 6:e02284-14. doi:10.1128/mBio.02284-14.
    1. Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG, Li Y, Shen N, Ghedin E, Morris A, Diaz P, Huang L, Wikoff WR, Ubeda C, Artacho A, Rom WN, Sterman DH, Collman RG, Blaser MJ, Weiden MD. 2016. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol 1:16031. doi:10.1038/nmicrobiol.2016.31.
    1. Qin S, Clausen E, Lucht L, Michael H, Beck JM, Curtis JL, Freeman CM, Morris A. 2016. Presence of Tropheryma whipplei in different body sites in a cohort of healthy subjects. Am J Respir Crit Care Med 194:243–245. doi:10.1164/rccm.201601-0162LE.
    1. Dickson RP, Erb-Downward JR, Huffnagle GB. 2014. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis. Lancet Respir Med 2:238–246. doi:10.1016/S2213-2600(14)70028-1.
    1. Dickson RP, Martinez FJ, Huffnagle GB. 2014. The role of the microbiome in exacerbations of chronic lung diseases. Lancet 384:691–702. doi:10.1016/S0140-6736(14)61136-3.
    1. Dickson RP, Huffnagle GB. 2015. The lung microbiome: new principles for respiratory bacteriology in health and disease. PLoS Pathog 11:e1004923. doi:10.1371/journal.ppat.1004923.
    1. Charlson ES, Bittinger K, Chen J, Diamond JM, Li H, Collman RG, Bushman FD. 2012. Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts. PLoS One 7:e42786. doi:10.1371/journal.pone.0042786.
    1. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG. 2011. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184:957–963. doi:10.1164/rccm.201104-0655OC.
    1. Gleeson K, Eggli DF, Maxwell SL. 1997. Quantitative aspiration during sleep in normal subjects. Chest 111:1266–1272. doi:10.1378/chest.111.5.1266.
    1. Sze MA, Dimitriu PA, Hayashi S, Elliott WM, McDonough JE, Gosselink JV, Cooper J, Sin DD, Mohn WW, Hogg JC. 2012. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185:1073–1080. doi:10.1164/rccm.201111-2075OC.
    1. Han MK, Zhou Y, Murray S, Tayob N, Noth I, Lama VN, Moore BB, White ES, Flaherty KR, Huffnagle GB, Martinez FJ, COMET Investigators . 2014. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir Med 2:548–556. doi:10.1016/S2213-2600(14)70069-4.
    1. Dy R, Sethi S. 2016. The lung microbiome and exacerbations of COPD. Curr Opin Pulm Med 22:196–202. doi:10.1097/MCP.0000000000000268.
    1. Wimberley N, Faling LJ, Bartlett JG. 1979. A fiberoptic bronchoscopy technique to obtain uncontaminated lower airway secretions for bacterial culture. Am Rev Respir Dis 119:337–343. doi:10.1164/arrd.1979.119.3.337.
    1. George DL, Falk PS, Wunderink RG, Leeper KV, Meduri GU, Steere EL, Corbett CE, Mayhall CG. 1998. Epidemiology of ventilator-acquired pneumonia based on protected bronchoscopic sampling. Am J Respir Crit Care Med 158:1839–1847. doi:10.1164/ajrccm.158.6.9610069.
    1. Boersma WG, Erjavec Z, van der Werf TS, de Vries-Hosper HG, Gouw AS, Manson WL. 2007. Bronchoscopic diagnosis of pulmonary infiltrates in granulocytopenic patients with hematologic malignancies: BAL versus PSB and PBAL. Respir Med 101:317–325. doi:10.1016/j.rmed.2006.04.021.
    1. Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA, Caporaso JG, Knight R, Ley RE. 2014. Conducting a microbiome study. Cell 158:250–262. doi:10.1016/j.cell.2014.06.037.
    1. Hasleton PS. 1972. The internal surface area of the adult human lung. J Anat 112:391–400.
    1. Busse WW, Wanner A, Adams K, Reynolds HY, Castro M, Chowdhury B, Kraft M, Levine RJ, Peters SP, Sullivan EJ. 2005. Investigative bronchoprovocation and bronchoscopy in airway diseases. Am J Respir Crit Care Med 172:807–816. doi:10.1164/rccm.200407-966WS.
    1. Moore WC, Evans MD, Bleecker ER, Busse WW, Calhoun WJ, Castro M, Chung KF, Erzurum SC, Curran-Everett D, Dweik RA, Gaston B, Hew M, Israel E, Mayse ML, Pascual RM, Peters SP, Silveira L, Wenzel SE, Jarjour NN, National Heart, Lung, and Blood Institute's Severe Asthma Research Group . 2011. Safety of investigative bronchoscopy in the Severe Asthma Research Program. J Allergy Clin Immunol 128:328–336.e3. doi:10.1016/j.jaci.2011.02.042.
    1. Freeman CM, Crudgington S, Stolberg VR, Brown JP, Sonstein J, Alexis NE, Doerschuk CM, Basta PV, Carretta EE, Couper DJ, Hastie AT, Kaner RJ, O’Neal WK, Paine R, Rennard SI, Shimbo D, Woodruff PG, Zeidler M, Curtis JL. 2015. Design of a multi-center immunophenotyping analysis of peripheral blood, sputum and bronchoalveolar lavage fluid in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS). J Transl Med 13:19. doi:10.1186/s12967-014-0374-z.
    1. Moller DR, Koth LL, Maier LA, Morris A, Drake W, Rossman M, Leader JK, Collman RG, Hamzeh N, Sweiss NJ, Zhang Y, O’Neal S, Senior RM, Becich M, Hochheiser HS, Kaminski N, Wisniewski SR, Gibson KF, GRADS Sarcoidosis Study Group . 2015. Rationale and design of the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) Study. Sarcoidosis Protocol. Ann Am Thorac Soc 12:1561–1571. doi:10.1513/AnnalsATS.201503-172OT.
    1. Strange C, Senior RM, Sciurba F, O’Neal S, Morris A, Wisniewski SR, Bowler R, Hochheiser HS, Becich MJ, Zhang Y, Leader JK, Methé BA, Kaminski N, Sandhaus RA, GRADS Alpha-1 Study Group . 2015. Rationale and design of the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis Study. Alpha-1 Protocol. Ann Am Thorac Soc 12:1551–1560. doi:10.1513/AnnalsATS.201503-143OC.
    1. Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, Young VB, Toews GB, Curtis JL, Sundaram B, Martinez FJ, Huffnagle GB. 2011. Analysis of the lung microbiome in the ‘healthy’ smoker and in COPD. PLoS One 6:e16384. doi:10.1371/journal.pone.0016384.
    1. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW. 2014. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87. doi:10.1186/s12915-014-0087-z.
    1. Huxley EJ, Viroslav J, Gray WR, Pierce AK. 1978. Pharyngeal aspiration in normal adults and patients with depressed consciousness. Am J Med 64:564–568. doi:10.1016/0002-9343(78)90574-0.
    1. Quinn LH, Meyer OO. 1929. The relationship of sinusitis and bronchiectasis. Arch Otolaryngology 10:152–165. doi:10.1001/archotol.1929.00620050048003.
    1. Dickson RP, Erb-Downward JR, Prescott HC, Martinez FJ, Curtis JL, Lama VN, Huffnagle GB. 2014. Cell-associated bacteria in the human lung microbiome. Microbiome 2:28. doi:10.1186/2049-2618-2-28.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108(Suppl 1):4516–4522. doi:10.1073/pnas.1000080107.
    1. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/AEM.01043-13.
    1. Schloss PD. 2015. MiSeq SOP—mothur. Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI: .
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09.
    1. Center for Microbial Ecology 2015. RDP release 11, update 3. Center for Microbial Ecology, Michigan State University, East Lansing, MI: .
    1. Oksanen JF, Blanchet G, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2012. vegan: community ecology package. R package version 2.0-4. R Foundation for Statistical Computing, Vienna, Austria: .
    1. R Core Team 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: .
    1. Wang Y, Naumann U, Wright ST, Warton DI. 2012. mvabund-an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 3:471–474. doi:10.1111/j.2041-210X.2012.00190.x.
    1. Akaike H. 1974. A new look at the statistical model identification. IEEE Trans Automat Control 19:716–723. doi:10.1109/TAC.1974.1100705.
    1. Gu Z, Eils R, Schlesner M. 2016. Complex heat maps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. doi:10.1093/bioinformatics/btw313.

Source: PubMed

3
Abonnieren