Anesthesiology and cognitive impairment: a narrative review of current clinical literature

Jillian C Belrose, Ruediger R Noppens, Jillian C Belrose, Ruediger R Noppens

Abstract

Background: The impact of general anesthesia on cognitive impairment is controversial and complex. A large body of evidence supports the association between exposure to surgery under general anesthesia and development of delayed neurocognitive recovery in a subset of patients. Existing literature continues to debate whether these short-term effects on cognition can be attributed to anesthetic agents themselves, or whether other variables are causative of the observed changes in cognition. Furthermore, there is conflicting data on the relationship between anesthesia exposure and the development of long-term neurocognitive disorders, or development of incident dementia in the patient population with normal preoperative cognitive function. Patients with pre-existing cognitive impairment present a unique set of anesthetic considerations, including potential medication interactions, challenges with cooperation during assessment and non-general anesthesia techniques, and the possibility that pre-existing cognitive impairment may impart a susceptibility to further cognitive dysfunction.

Main body: This review highlights landmark and recent studies in the field, and explores potential mechanisms involved in perioperative cognitive disorders (also known as postoperative cognitive dysfunction, POCD). Specifically, we will review clinical and preclinical evidence which implicates alterations to tau protein, inflammation, calcium dysregulation, and mitochondrial dysfunction. As our population ages and the prevalence of Alzheimer's disease and other forms of dementia continues to increase, we require a greater understanding of potential modifiable factors that impact perioperative cognitive impairment.

Conclusions: Future research should aim to further characterize the associated risk factors and determine whether certain anesthetic approaches or other interventions may lower the potential risk which may be conferred by anesthesia and/or surgery in susceptible individuals.

Keywords: Alzheimer’s disease; Anesthesia; Dementia; Desflurane; Elderly; Isoflurane; Neurocognitive disorder; Postoperative cognitive dysfunction; Propofol; Sevoflurane.

Conflict of interest statement

R.R.N. is a member of the editorial board for BMC Anesthesiology. The authors declare that they have no other competing interests.

References

    1. Prince M, Wimo A, Guerchet M, Ali GC, Wu Y-T, Prina M. World Alzheimer Report 2015, The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. Alzheimer’s Dis Int ADI Lond. 2015;87. . (last accessed 10/2018).
    1. Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina AM, Winblad B, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement J Alzheimers Assoc. 2017;13:1–7. doi: 10.1016/j.jalz.2016.07.150.
    1. Alzheimer’s Association 2018 Alzheimer’s disease facts and figures. Alzheimers Dement J Alzheimers Assoc. 2018;14:367–429. doi: 10.1016/j.jalz.2018.02.001.
    1. Möllers Tobias, Stocker Hannah, Wei Wenjia, Perna Laura, Brenner Hermann. Length of hospital stay and dementia: A systematic review of observational studies. International Journal of Geriatric Psychiatry. 2018;34(1):8–21. doi: 10.1002/gps.4993.
    1. Bedford PD. Adverse cerebral effects of anaesthesia on old people. Lancet Lond Engl. 1955;269:259–263. doi: 10.1016/S0140-6736(55)92689-1.
    1. Symes E, Maruff P, Ajani A, Currie J. Issues associated with the identification of cognitive change following coronary artery bypass grafting. Aust N Z J Psychiatry. 2000;34:770–784. doi: 10.1080/j.1440-1614.2000.00808.x.
    1. Evered L, Silbert B, Knopman DS, Scott DA, DeKosky ST, Rasmussen LS, et al. Recommendations for the nomenclature of cognitive change associated with Anaesthesia and Surgery-20181. J Alzheimers Dis JAD. 2018;66:1–10. doi: 10.3233/JAD-189004.
    1. Lewis M, Maruff P, Silbert B. Statistical and conceptual issues in defining postoperative cognitive dysfunction. Neurosci Biobehav Rev. 2004;28:433–440. doi: 10.1016/j.neubiorev.2004.05.002.
    1. Murkin JM, Newman SP, Stump DA, Blumenthal JA. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg. 1995;59:1289–1295. doi: 10.1016/0003-4975(95)00106-U.
    1. Murkin JM, Stump DA, Blumenthal JA, McKhann G. Defining dysfunction: group means versus incidence analysis--a statement of consensus. Ann Thorac Surg. 1997;64:904–905. doi: 10.1016/S0003-4975(97)00743-1.
    1. Ghoneim MM, Block RI. Clinical, methodological and theoretical issues in the assessment of cognition after anaesthesia and surgery: a review. Eur J Anaesthesiol. 2012;29:409–422.
    1. Newman S, Klinger L, Venn G, Smith P, Harrison M, Treasure T. Subjective reports of cognition in relation to assessed cognitive performance following coronary artery bypass surgery. J Psychosom Res. 1989;33:227–233. doi: 10.1016/0022-3999(89)90050-0.
    1. Shaw PJ, Bates D, Cartlidge NE, French JM, Heaviside D, Julian DG, et al. Neurologic and neuropsychological morbidity following major surgery: comparison of coronary artery bypass and peripheral vascular surgery. Stroke. 1987;18:700–707. doi: 10.1161/01.STR.18.4.700.
    1. Newman MF, Mathew JP, Grocott HP, Mackensen GB, Monk T, Welsh-Bohmer KA, et al. Central nervous system injury associated with cardiac surgery. Lancet Lond Engl. 2006;368:694–703. doi: 10.1016/S0140-6736(06)69254-4.
    1. Evered LA, Silbert BS, Scott DA, Maruff P, Laughton KM, Volitakis I, et al. Plasma amyloid beta42 and amyloid beta40 levels are associated with early cognitive dysfunction after cardiac surgery. Ann Thorac Surg. 2009;88:1426–1432. doi: 10.1016/j.athoracsur.2009.07.003.
    1. Gao L, Taha R, Gauvin D, Othmen LB, Wang Y, Blaise G. Postoperative cognitive dysfunction after cardiac surgery. Chest. 2005;128:3664–3670. doi: 10.1378/chest.128.5.3664.
    1. Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395–402. doi: 10.1056/NEJM200102083440601.
    1. Pugsley W, Klinger L, Paschalis C, Treasure T, Harrison M, Newman S. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke. 1994;25:1393–1399. doi: 10.1161/01.STR.25.7.1393.
    1. Selnes OA, Grega MA, Bailey MM, Pham LD, Zeger SL, Baumgartner WA, et al. Cognition 6 years after surgical or medical therapy for coronary artery disease. Ann Neurol. 2008;63:581–590. doi: 10.1002/ana.21382.
    1. Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International study of postoperative cognitive dysfunction. Lancet Lond Engl. 1998;351:857–861. doi: 10.1016/S0140-6736(97)07382-0.
    1. Mason SE, Noel-Storr A, Ritchie CW. The impact of general and regional anesthesia on the incidence of postoperative cognitive dysfunction and postoperative delirium: a systematic review with meta-analysis. J Alzheimers Dis JAD. 2010;22(Suppl 3):67–79. doi: 10.3233/JAD-2010-101086.
    1. Silbert BS, Evered LA, Scott DA. Incidence of postoperative cognitive dysfunction after general or spinal anaesthesia for extracorporeal shock wave lithotripsy. Br J Anaesth. 2014;113:784–791. doi: 10.1093/bja/aeu163.
    1. Berger M, Schenning KJ, Brown CH, Deiner SG, Whittington RA, Eckenhoff RG, et al. Best practices for postoperative brain health: recommendations from the fifth international perioperative neurotoxicity working group. Anesth Analg. 2018;127:1406–1413. doi: 10.1213/ANE.0000000000003841.
    1. Miller D, Lewis SR, Pritchard MW, Schofield-Robinson OJ, Shelton CL, Alderson P, et al. Intravenous versus inhalational maintenance of anaesthesia for postoperative cognitive outcomes in elderly people undergoing non-cardiac surgery. Cochrane Database Syst Rev. 2018;8:CD012317.
    1. Lu X, Jin X, Yang S, Xia Y. The correlation of the depth of anesthesia and postoperative cognitive impairment: a meta-analysis based on randomized controlled trials. J Clin Anesth. 2018;45:55–59. doi: 10.1016/j.jclinane.2017.12.002.
    1. Hou R, Wang H, Chen L, Qiu Y, Li S. POCD in patients receiving total knee replacement under deep vs light anesthesia: a randomized controlled trial. Brain Behav. 2018;8:e00910. doi: 10.1002/brb3.910.
    1. Erdogan MA, Demirbilek S, Erdil F, Aydogan MS, Ozturk E, Togal T, et al. The effects of cognitive impairment on anaesthetic requirement in the elderly. Eur J Anaesthesiol. 2012;29:326–331. doi: 10.1097/EJA.0b013e32835475c6.
    1. Purdon PL, Pavone KJ, Akeju O, Smith AC, Sampson AL, Lee J, et al. The ageing brain: age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia. Br J Anaesth. 2015;115(Suppl 1):i46–i57. doi: 10.1093/bja/aev213.
    1. Ma D, Rajakumaraswamy N, Maze M. alpha2-Adrenoceptor agonists: shedding light on neuroprotection? Br Med Bull. 2004;71:77–92. doi: 10.1093/bmb/ldh036.
    1. Mo Y, Zimmermann AE. Role of dexmedetomidine for the prevention and treatment of delirium in intensive care unit patients. Ann Pharmacother. 2013;47:869–876. doi: 10.1345/aph.1AR708.
    1. Su X, Meng Z-T, Wu X-H, Cui F, Li H-L, Wang D-X, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet Lond Engl. 2016;388:1893–1902. doi: 10.1016/S0140-6736(16)30580-3.
    1. Zhou C, Zhu Y, Liu Z, Ruan L. Effect of dexmedetomidine on postoperative cognitive dysfunction in elderly patients after general anaesthesia: a meta-analysis. J Int Med Res. 2016;44:1182–1190. doi: 10.1177/0300060516671623.
    1. Deiner S, Luo X, Lin H-M, Sessler DI, Saager L, Sieber FE, et al. Intraoperative infusion of Dexmedetomidine for prevention of postoperative delirium and cognitive dysfunction in elderly patients undergoing major elective noncardiac surgery: a randomized clinical trial. JAMA Surg. 2017;152:e171505. doi: 10.1001/jamasurg.2017.1505.
    1. Chernov VI, Efimova NY, Efimova IY, Akhmedov SD, Lishmanov YB. Short-term and long-term cognitive function and cerebral perfusion in off-pump and on-pump coronary artery bypass patients. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 2006;29:74–81. doi: 10.1016/j.ejcts.2005.10.001.
    1. Paolin A, Michielon P, Betetto M, Sartori G, Valfré C, Rodriguez G, et al. Lower perfusion pressure during hypothermic cardiopulmonary bypass is associated with decreased cerebral blood flow and impaired memory performance 6 months postoperatively. Heart Surg Forum. 2010;13:E7–12. doi: 10.1532/HSF98.20091122.
    1. Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg. 2009;87:36–44. doi: 10.1016/j.athoracsur.2008.08.070.
    1. Abildstrom H, Høgh P, Sperling B, Moller JT, Yndgaard S, Rasmussen LS. Cerebral blood flow and cognitive dysfunction after coronary surgery. Ann Thorac Surg. 2002;73:1174–1178. doi: 10.1016/S0003-4975(01)03618-9.
    1. Goettel N, Burkhart CS, Rossi A, Cabella BCT, Berres M, Monsch AU, et al. Associations between impaired cerebral blood flow autoregulation, cerebral oxygenation, and biomarkers of brain injury and postoperative cognitive dysfunction in elderly patients after major noncardiac surgery. Anesth Analg. 2017;124:934–942. doi: 10.1213/ANE.0000000000001803.
    1. Gong G-L, Liu B, Wu J-X, Li J-Y, Shu B-Q, You Z-J. Postoperative cognitive dysfunction induced by different surgical methods and its risk factors. Am Surg. 2018;84:1531–1537.
    1. Shoair OA, Grasso Ii MP, Lahaye LA, Daniel R, Biddle CJ, Slattum PW. Incidence and risk factors for postoperative cognitive dysfunction in older adults undergoing major noncardiac surgery: a prospective study. J Anaesthesiol Clin Pharmacol. 2015;31:30–36. doi: 10.4103/0970-9185.150530.
    1. Kadoi Y, Kawauchi C, Kuroda M, Takahashi K, Saito S, Fujita N, et al. Association between cerebrovascular carbon dioxide reactivity and postoperative short-term and long-term cognitive dysfunction in patients with diabetes mellitus. J Anesth. 2011;25:641–647. doi: 10.1007/s00540-011-1182-8.
    1. Puskas F, Grocott HP, White WD, Mathew JP, Newman MF, Bar-Yosef S. Intraoperative hyperglycemia and cognitive decline after CABG. Ann Thorac Surg. 2007;84:1467–1473. doi: 10.1016/j.athoracsur.2007.06.023.
    1. Jiang J, Dong Y, Huang W, Bao M. General anesthesia exposure and risk of dementia: a meta-analysis of epidemiological studies. Oncotarget. 2017;8:59628–59637.
    1. Kim CT, Myung W, Lewis M, Lee H, Kim SE, Lee K, et al. Exposure to general anesthesia and risk of dementia: a Nationwide population-based cohort study. J Alzheimers Dis JAD. 2018;63:395–405. doi: 10.3233/JAD-170951.
    1. Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science. 1983;219:1184–1190. doi: 10.1126/science.6338589.
    1. Gómez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci. 1996;16:4491–4500. doi: 10.1523/JNEUROSCI.16-14-04491.1996.
    1. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982;215:1237–1239. doi: 10.1126/science.7058341.
    1. Douchamps V, Mathis C. A second wind for the cholinergic system in Alzheimer’s therapy. Behav Pharmacol. 2017;28:112–123. doi: 10.1097/FBP.0000000000000300.
    1. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;66:137–147. doi: 10.1136/jnnp.66.2.137.
    1. Guerrero-Muñoz MJ, Gerson J, Castillo-Carranza DL. Tau oligomers: the toxic player at synapses in Alzheimer’s disease. Front Cell Neurosci. 2015;9:464. doi: 10.3389/fncel.2015.00464.
    1. Krstic D, Knuesel I. The airbag problem-a potential culprit for bench-to-bedside translational efforts: relevance for Alzheimer’s disease. Acta Neuropathol Commun. 2013;1:62. doi: 10.1186/2051-5960-1-62.
    1. Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 1997;23:134–147. doi: 10.1016/S0891-5849(96)00629-6.
    1. Selles M. Clara, Oliveira Mauricio M., Ferreira Sergio T. Brain Inflammation Connects Cognitive and Non-Cognitive Symptoms in Alzheimer’s Disease. Journal of Alzheimer's Disease. 2018;64(s1):S313–S327. doi: 10.3233/JAD-179925.
    1. Di Nino G, Adversi M, Samolsky Dekel BG, Fodale V, Rosa G, Melotti RM. Peri-operative risk management in patients with Alzheimer’s disease. J Alzheimers Dis JAD. 2010;22(Suppl 3):121–127. doi: 10.3233/JAD-2010-101299.
    1. Fernandez CR, Fields A, Richards T, Kaye AD. Anesthetic considerations in patients with Alzheimer’s disease. J Clin Anesth. 2003;15:52–58. doi: 10.1016/S0952-8180(02)00483-X.
    1. Perez-Protto S, Geube M, Ontaneda D, Dalton JE, Kurz A, Sessler DI. Sensitivity to volatile anesthetics in patients with dementia: a case-control analysis. Can J Anaesth J Can Anesth. 2014;61:611–618. doi: 10.1007/s12630-014-0165-2.
    1. Baruah J, Easby J, Kessell G. Effects of acetylcholinesterase inhibitor therapy for Alzheimer’s disease on neuromuscular block. Br J Anaesth. 2008;100:420. doi: 10.1093/bja/aen010.
    1. Crowe S, Collins L. Suxamethonium and donepezil: a cause of prolonged paralysis. Anesthesiology. 2003;98:574–575. doi: 10.1097/00000542-200302000-00040.
    1. Dooley M, Lamb HM. Donepezil: a review of its use in Alzheimer’s disease. Drugs Aging. 2000;16:199–226. doi: 10.2165/00002512-200016030-00005.
    1. Bhardwaj A, Dharmavaram S, Wadhawan S, Sethi A, Bhadoria P. Donepezil: a cause of inadequate muscle relaxation and delayed neuromuscular recovery. J Anaesthesiol Clin Pharmacol. 2011;27:247–248. doi: 10.4103/0970-9185.81833.
    1. Mehaffey J. Hunter, Hawkins Robert B., Tracci Margaret C., Robinson William P., Cherry Kenneth J., Kern John A., Upchurch Gilbert R. Preoperative dementia is associated with increased cost and complications after vascular surgery. Journal of Vascular Surgery. 2018;68(4):1203–1208. doi: 10.1016/j.jvs.2018.01.032.
    1. Evered LA, Silbert BS, Scott DA, Maruff P, Ames D, Choong PF. Preexisting cognitive impairment and mild cognitive impairment in subjects presenting for total hip joint replacement. Anesthesiology. 2011;114:1297–1304. doi: 10.1097/ALN.0b013e31821b1aab.
    1. Khan MA, Hossain FS, Ahmed I, Muthukumar N, Mohsen A. Predictors of early mortality after hip fracture surgery. Int Orthop. 2013;37:2119–2124. doi: 10.1007/s00264-013-2068-1.
    1. Seitz DP, Gill SS, Bell CM, Austin PC, Gruneir A, Anderson GM, et al. Postoperative medical complications associated with anesthesia in older adults with dementia. J Am Geriatr Soc. 2014;62:2102–2109. doi: 10.1111/jgs.13106.
    1. Cao L, Wang K, Gu T, Du B, Song J. Association between APOE epsilon 4 allele and postoperative cognitive dysfunction: a meta-analysis. Int J Neurosci. 2014;124:478–485. doi: 10.3109/00207454.2013.860601.
    1. Schenning KJ, Murchison CF, Mattek NC, Kaye JA, Quinn JF. Sex and genetic differences in postoperative cognitive dysfunction: a longitudinal cohort analysis. Biol Sex Differ. 2019;10:14. doi: 10.1186/s13293-019-0228-8.
    1. Liu Y, Pan N, Ma Y, Zhang S, Guo W, Li H, et al. Inhaled sevoflurane may promote progression of amnestic mild cognitive impairment: a prospective, randomized parallel-group study. Am J Med Sci. 2013;345:355–360. doi: 10.1097/MAJ.0b013e31825a674d.
    1. Patel D, Lunn AD, Smith AD, Lehmann DJ, Dorrington KL. Cognitive decline in the elderly after surgery and anaesthesia: results from the Oxford project to investigate memory and ageing (OPTIMA) cohort. Anaesthesia. 2016;71:1144–1152. doi: 10.1111/anae.13571.
    1. Wan Y, Xu J, Ma D, Zeng Y, Cibelli M, Maze M. Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology. 2007;106:436–443. doi: 10.1097/00000542-200703000-00007.
    1. Kawano Takashi, Yamanaka Daiki, Aoyama Bun, Tateiwa Hiroki, Shigematsu-Locatelli Marie, Nishigaki Atsushi, Iwata Hideki, Locatelli Fabricio M., Yokoyama Masataka. Involvement of acute neuroinflammation in postoperative delirium-like cognitive deficits in rats. Journal of Anesthesia. 2018;32(4):506–517. doi: 10.1007/s00540-018-2504-x.
    1. Xu Z, Dong Y, Wang H, Culley DJ, Marcantonio ER, Crosby G, et al. Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice. Sci Rep. 2014;4. 10.1038/srep03766.
    1. Crosby C, Culley DJ, Baxter MG, Yukhananov R, Crosby G. Spatial memory performance 2 weeks after general anesthesia in adult rats. Anesth Analg. 2005;101:1389–1392. doi: 10.1213/.
    1. Wu J, Zhang M, Li H, Sun X, Hao S, Ji M, et al. BDNF pathway is involved in the protective effects of SS-31 on isoflurane-induced cognitive deficits in aging mice. Behav Brain Res. 2016;305:115–121. doi: 10.1016/j.bbr.2016.02.036.
    1. Liu W, Xu J, Wang H, Xu C, Ji C, Wang Y, et al. Isoflurane-induced spatial memory impairment by a mechanism independent of amyloid-beta levels and tau protein phosphorylation changes in aged rats. Neurol Res. 2012;34:3–10. doi: 10.1179/1743132811Y.0000000047.
    1. Callaway JK, Wood C, Jenkins TA, Royse AG, Royse CF. Isoflurane in the presence or absence of surgery increases hippocampal cytokines associated with memory deficits and responses to brain injury in rats. Behav Brain Res. 2016;303:44–52. doi: 10.1016/j.bbr.2016.01.032.
    1. Xu X, Zhang Q, Tian X, Wang G. Sevoflurane anesthesia induces neither contextual fear memory impairment nor alterations in local population connectivity of medial prefrontal cortex local field potentials networks in aged rats. Fundam Clin Pharmacol. 2016;30:338–346. doi: 10.1111/fcp.12194.
    1. Le Freche H, Brouillette J, Fernandez-Gomez F-J, Patin P, Caillierez R, Zommer N, et al. Tau phosphorylation and sevoflurane anesthesia: an association to postoperative cognitive impairment. Anesthesiology. 2012;116:779–787. doi: 10.1097/ALN.0b013e31824be8c7.
    1. Ji M, Dong L, Jia M, Liu W, Zhang M, Ju L, et al. Epigenetic enhancement of brain-derived neurotrophic factor signaling pathway improves cognitive impairments induced by isoflurane exposure in aged rats. Mol Neurobiol. 2014;50:937–944. doi: 10.1007/s12035-014-8659-z.
    1. Guo S, Liu L, Wang C, Jiang Q, Dong Y, Tian Y. Repeated exposure to sevoflurane impairs the learning and memory of older male rats. Life Sci. 2018;192:75–83. doi: 10.1016/j.lfs.2017.11.025.
    1. Tang JX, Eckenhoff MF. Anesthetic effects in Alzheimer transgenic mouse models. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;47:167–171. doi: 10.1016/j.pnpbp.2012.06.007.
    1. Bianchi SL, Tran T, Liu C, Lin S, Li Y, Keller JM, et al. Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics. Neurobiol Aging. 2008;29:1002–1010. doi: 10.1016/j.neurobiolaging.2007.02.009.
    1. Tang JX, Mardini F, Caltagarone BM, Garrity ST, Li RQ, Bianchi SL, et al. Anesthesia in presymptomatic Alzheimer’s disease: a study using the triple-transgenic mouse model. Alzheimers Dement J Alzheimers Assoc. 2011;7:521–531. doi: 10.1016/j.jalz.2010.10.003.
    1. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15:673–684. doi: 10.1016/S1474-4422(16)00070-3.
    1. Mehta PD, Pirttilä T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM. Plasma and cerebrospinal fluid levels of amyloid beta proteins 1-40 and 1-42 in Alzheimer disease. Arch Neurol. 2000;57:100–105. doi: 10.1001/archneur.57.1.100.
    1. Fukumoto H, Tennis M, Locascio JJ, Hyman BT, Growdon JH, Irizarry MC. Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels. Arch Neurol. 2003;60:958–964. doi: 10.1001/archneur.60.7.958.
    1. Fei M, Jianghua W, Rujuan M, Wei Z, Qian W. The relationship of plasma Aβ levels to dementia in aging individuals with mild cognitive impairment. J Neurol Sci. 2011;305:92–96. doi: 10.1016/j.jns.2011.03.005.
    1. Kim HJ, Park KW, Kim TE, Im JY, Shin HS, Kim S, et al. Elevation of the plasma Aβ40/Aβ42 ratio as a diagnostic marker of sporadic early-onset Alzheimer’s disease. J Alzheimers Dis JAD. 2015;48:1043–1050. doi: 10.3233/JAD-143018.
    1. Tang JX, Baranov D, Hammond M, Shaw LM, Eckenhoff MF, Eckenhoff RG. Human Alzheimer and inflammation biomarkers after anesthesia and surgery. Anesthesiology. 2011;115:727–732. doi: 10.1097/ALN.0b013e31822e9306.
    1. Berger M, Nadler JW, Friedman A, McDonagh DL, Bennett ER, Cooter M, et al. The effect of Propofol versus Isoflurane anesthesia on human cerebrospinal fluid markers of Alzheimer’s disease: results of a randomized trial. J Alzheimers Dis JAD. 2016;52:1299–1310. doi: 10.3233/JAD-151190.
    1. Pikwer A, Castegren M, Namdar S, Blennow K, Zetterberg H, Mattsson N. Effects of surgery and propofol-remifentanil total intravenous anesthesia on cerebrospinal fluid biomarkers of inflammation, Alzheimer’s disease, and neuronal injury in humans: a cohort study. J Neuroinflammation. 2017;14:193. doi: 10.1186/s12974-017-0950-2.
    1. Xie Z, Swain CA, Ward SAP, Zheng H, Dong Y, Sunder N, et al. Preoperative cerebrospinal fluid β-amyloid/tau ratio and postoperative delirium. Ann Clin Transl Neurol. 2014;1:319–328. doi: 10.1002/acn3.58.
    1. Planel E, Richter KEG, Nolan CE, Finley JE, Liu L, Wen Y, et al. Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia. J Neurosci. 2007;27:3090–3097. doi: 10.1523/JNEUROSCI.4854-06.2007.
    1. Xiao H, Run X, Cao X, Su Y, Sun Z, Tian C, et al. Temperature control can abolish anesthesia-induced tau hyperphosphorylation and partly reverse anesthesia-induced cognitive impairment in old mice. Psychiatry Clin Neurosci. 2013;67:493–500. doi: 10.1111/pcn.12091.
    1. Dong Y, Wu X, Xu Z, Zhang Y, Xie Z. Anesthetic isoflurane increases phosphorylated tau levels mediated by caspase activation and Aβ generation. PLoS One. 2012;7:e39386. doi: 10.1371/journal.pone.0039386.
    1. Feng C, Liu Y, Yuan Y, Cui W, Zheng F, Ma Y, et al. Isoflurane anesthesia exacerbates learning and memory impairment in zinc-deficient APP/PS1 transgenic mice. Neuropharmacology. 2016;111:119–129. doi: 10.1016/j.neuropharm.2016.08.035.
    1. Li C, Liu S, Xing Y, Tao F. The role of hippocampal tau protein phosphorylation in isoflurane-induced cognitive dysfunction in transgenic APP695 mice. Anesth Analg. 2014;119:413–419. doi: 10.1213/ANE.0000000000000315.
    1. Tang JX, Mardini F, Janik LS, Garrity ST, Li RQ, Bachlani G, et al. Modulation of murine Alzheimer pathogenesis and behavior by surgery. Ann Surg. 2013;257:439–448. doi: 10.1097/SLA.0b013e318269d623.
    1. Tao G, Zhang J, Zhang L, Dong Y, Yu B, Crosby G, et al. Sevoflurane induces tau phosphorylation and glycogen synthase kinase 3β activation in young mice. Anesthesiology. 2014;121:510–527. doi: 10.1097/ALN.0000000000000278.
    1. Tan W-F, Cao X-Z, Wang J-K, Lv H-W, Wu B-Y, Ma H. Protective effects of lithium treatment for spatial memory deficits induced by tau hyperphosphorylation in splenectomized rats. Clin Exp Pharmacol Physiol. 2010;37:1010–1015. doi: 10.1111/j.1440-1681.2010.05433.x.
    1. Tang N, Jiang R, Wang X, Wen J, Liu L, Wu J, et al. Insulin resistance plays a potential role in postoperative cognitive dysfunction in patients following cardiac valve surgery. Brain Res. 1657;2017:377–382.
    1. Kline R, Wong E, Haile M, Didehvar S, Farber S, Sacks A, et al. Peri-operative inflammatory cytokines in plasma of the elderly correlate in prospective study with postoperative changes in cognitive test scores. Int J Anesthesiol Res. 2016;4:313–321.
    1. Liu X, Yu Y, Zhu S. Inflammatory markers in postoperative delirium (POD) and cognitive dysfunction (POCD): a meta-analysis of observational studies. PLoS One. 2018;13:e0195659. doi: 10.1371/journal.pone.0195659.
    1. Cui R-S, Wang K, Wang Z-L. Sevoflurane anesthesia alters cognitive function by activating inflammation and cell death in rats. Exp Ther Med. 2018;15:4127–4130.
    1. Perucho J, Rubio I, Casarejos MJ, Gomez A, Rodriguez-Navarro JA, Solano RM, et al. Anesthesia with isoflurane increases amyloid pathology in mice models of Alzheimer’s disease. J Alzheimers Dis JAD. 2010;19:1245–1257. doi: 10.3233/JAD-2010-1318.
    1. Wu X, Lu Y, Dong Y, Zhang G, Zhang Y, Xu Z, et al. The inhalation anesthetic isoflurane increases levels of proinflammatory cytokine TNF-α, IL-6 and IL-1β. Neurobiol Aging. 2012;33:1364–1378. doi: 10.1016/j.neurobiolaging.2010.11.002.
    1. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 2010;68:360–368. doi: 10.1002/ana.22082.
    1. Zheng J-W, Meng B, Li X-Y, Lu B, Wu G-R, Chen J-P. NF-κB/P65 signaling pathway: a potential therapeutic target in postoperative cognitive dysfunction after sevoflurane anesthesia. Eur Rev Med Pharmacol Sci. 2017;21:394–407.
    1. Acharya NK, Goldwaser EL, Forsberg MM, Godsey GA, Johnson CA, Sarkar A, et al. Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: possible link to postoperative delirium and cognitive decline. Brain Res. 1620;2015:29–41.
    1. Zheng B, Lai R, Li J, Zuo Z. Critical role of P2X7 receptors in the neuroinflammation and cognitive dysfunction after surgery. Brain Behav Immun. 2017;61:365–374. doi: 10.1016/j.bbi.2017.01.005.
    1. Ling Y, Ma W, Yu L, Zhang Y, Liang Q. Decreased PSD95 expression in medial prefrontal cortex (mPFC) was associated with cognitive impairment induced by sevoflurane anesthesia. J Zhejiang Univ Sci B. 2015;16:763–771. doi: 10.1631/jzus.B1500006.
    1. Miao Huihui, Dong Yuanlin, Zhang Yiying, Zheng Hui, Shen Yuan, Crosby Gregory, Culley Deborah J., Marcantonio Edward R., Xie Zhongcong. Anesthetic Isoflurane or Desflurane Plus Surgery Differently Affects Cognitive Function in Alzheimer’s Disease Transgenic Mice. Molecular Neurobiology. 2017;55(7):5623–5638. doi: 10.1007/s12035-017-0787-9.
    1. Zhang C, Zhang Y, Shen Y, Zhao G, Xie Z, Dong Y. Anesthesia/surgery induces cognitive impairment in female Alzheimer’s disease transgenic mice. J Alzheimers Dis JAD. 2017;57:505–518. doi: 10.3233/JAD-161268.
    1. Li L, Li Z, Cao Y, Fan D, Chui D, Guo X. Increased extrasynaptic GluN2B expression is involved in cognitive impairment after isoflurane anesthesia. Exp Ther Med. 2016;12:161–168. doi: 10.3892/etm.2016.3306.
    1. Uchimoto K, Miyazaki T, Kamiya Y, Mihara T, Koyama Y, Taguri M, et al. Isoflurane impairs learning and hippocampal long-term potentiation via the saturation of synaptic plasticity. Anesthesiology. 2014;121:302–310. doi: 10.1097/ALN.0000000000000269.
    1. Zurek AA, Yu J, Wang D-S, Haffey SC, Bridgwater EM, Penna A, et al. Sustained increase in α5GABAA receptor function impairs memory after anesthesia. J Clin Invest. 2014;124:5437–5441. doi: 10.1172/JCI76669.
    1. Zhang D-X, Jiang S, Yu L-N, Zhang F-J, Zhuang Q, Yan M. The effect of sevoflurane on the cognitive function of rats and its association with the inhibition of synaptic transmission. Int J Clin Exp Med. 2015;8:20853–20860.
    1. Wei H, Xie Z. Anesthesia, calcium homeostasis and Alzheimer’s disease. Curr Alzheimer Res. 2009;6:30–35. doi: 10.2174/156720509787313934.
    1. Qi Z, Tianbao Y, Yanan L, Xi X, Jinhua H, Qiujun W. Pre-treatment with nimodipine and 7.5% hypertonic saline protects aged rats against postoperative cognitive dysfunction via inhibiting hippocampal neuronal apoptosis. Behav Brain Res. 2017;321:1–7. doi: 10.1016/j.bbr.2016.12.029.
    1. Zhang Q, Li Y, Bao Y, Yin C, Xin X, Guo Y, et al. Pretreatment with nimodipine reduces incidence of POCD by decreasing calcineurin mediated hippocampal neuroapoptosis in aged rats. BMC Anesthesiol. 2018;18:42. doi: 10.1186/s12871-018-0501-0.
    1. Zhang G, Dong Y, Zhang B, Ichinose F, Wu X, Culley DJ, et al. Isoflurane-induced caspase-3 activation is dependent on cytosolic calcium and can be attenuated by memantine. J Neurosci. 2008;28:4551–4560. doi: 10.1523/JNEUROSCI.5694-07.2008.

Source: PubMed

3
Abonnieren