International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine

Richard B Kreider, Douglas S Kalman, Jose Antonio, Tim N Ziegenfuss, Robert Wildman, Rick Collins, Darren G Candow, Susan M Kleiner, Anthony L Almada, Hector L Lopez, Richard B Kreider, Douglas S Kalman, Jose Antonio, Tim N Ziegenfuss, Robert Wildman, Rick Collins, Darren G Candow, Susan M Kleiner, Anthony L Almada, Hector L Lopez

Abstract

Creatine is one of the most popular nutritional ergogenic aids for athletes. Studies have consistently shown that creatine supplementation increases intramuscular creatine concentrations which may help explain the observed improvements in high intensity exercise performance leading to greater training adaptations. In addition to athletic and exercise improvement, research has shown that creatine supplementation may enhance post-exercise recovery, injury prevention, thermoregulation, rehabilitation, and concussion and/or spinal cord neuroprotection. Additionally, a number of clinical applications of creatine supplementation have been studied involving neurodegenerative diseases (e.g., muscular dystrophy, Parkinson's, Huntington's disease), diabetes, osteoarthritis, fibromyalgia, aging, brain and heart ischemia, adolescent depression, and pregnancy. These studies provide a large body of evidence that creatine can not only improve exercise performance, but can play a role in preventing and/or reducing the severity of injury, enhancing rehabilitation from injuries, and helping athletes tolerate heavy training loads. Additionally, researchers have identified a number of potentially beneficial clinical uses of creatine supplementation. These studies show that short and long-term supplementation (up to 30 g/day for 5 years) is safe and well-tolerated in healthy individuals and in a number of patient populations ranging from infants to the elderly. Moreover, significant health benefits may be provided by ensuring habitual low dietary creatine ingestion (e.g., 3 g/day) throughout the lifespan. The purpose of this review is to provide an update to the current literature regarding the role and safety of creatine supplementation in exercise, sport, and medicine and to update the position stand of International Society of Sports Nutrition (ISSN).

Keywords: Adolescents; Athletes; Children; Clinical applications; Ergogenic aids; Muscle power; Muscular strength; Performance enhancement; Safety; Sport nutrition.

Figures

Fig. 1
Fig. 1
Chemical structure and biochemical pathway for creatine synthesis. From Kreider and Jung [6]
Fig. 2
Fig. 2
Proposed creatine kinase/phosphocreatine (CK/PCr) energy shuttle. CRT = creatine transporter; ANT = adenine nucleotide translocator; ATP = adenine triphosphate; ADP = adenine diphosphate; OP = oxidative phosphorylation; mtCK = mitochondrial creatine kinase; G = glycolysis; CK-g = creatine kinase associated with glycolytic enzymes; CK-c = cytosolic creatine kinase; CK-a = creatine kinase associated with subcellular sites of ATP utilization; 1 – 4 sites of CK/ATP interaction. From Kreider and Jung [6]
Fig. 3
Fig. 3
Role of mitochondrial creatine kinase (mtCK) in high energy metabolite transport and cellular respiration. VDAC = voltage-dependent anion channel; ROS = reactive oxygen species; RNS = reactive nitrogen species; ANT = adenine nucleotide translocator; ATP = adenine triphosphate; ADP = adenine diphosphate; Cr = creatine; and, PCr = phosphocreatine. From Kreider and Jung [6]
Fig. 4
Fig. 4
Approximate muscle total creatine levels in mmol/kg dry weight muscle reported in the literature for vegetarians, individuals following a normal diet, and in response to creatine loading with or without carbohydrate (CHO) or CHO and protein (PRO). From Kreider and Jung [6]

References

    1. Bertin M, et al. Origin of the genes for the isoforms of creatine kinase. Gene. 2007;392(1–2):273–282. doi: 10.1016/j.gene.2007.01.007.
    1. Suzuki T, et al. Evolution and divergence of the genes for cytoplasmic, mitochondrial, and flagellar creatine kinases. J Mol Evol. 2004;59(2):218–226. doi: 10.1007/s00239-004-2615-x.
    1. Sahlin K, Harris RC. The creatine kinase reaction: a simple reaction with functional complexity. Amino Acids. 2011;40(5):1363–1367. doi: 10.1007/s00726-011-0856-8.
    1. Harris R. Creatine in health, medicine and sport: an introduction to a meeting held at Downing College, University of Cambridge, July 2010. Amino Acids. 2011;40(5):1267–1270. doi: 10.1007/s00726-011-0913-3.
    1. Buford TW, et al. International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007;4:6. doi: 10.1186/1550-2783-4-6.
    1. Kreider RB, Jung YP. Creatine supplementation in exercise, sport, and medicine. J Exerc Nutr Biochem. 2011;15(2):53–69. doi: 10.5717/jenb.2011.15.2.53.
    1. Hultman E, et al. Muscle creatine loading in men. J Appl Physiol (1985) 1996;81(1):232–237.
    1. Green AL, et al. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. 1996;271(5 Pt 1):E821–E826.
    1. Balsom PD, Soderlund K, Ekblom B. Creatine in humans with special reference to creatine supplementation. Sports Med. 1994;18(4):268–280. doi: 10.2165/00007256-199418040-00005.
    1. Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 1992;83(3):367–374. doi: 10.1042/cs0830367.
    1. Brosnan ME, Brosnan JT. The role of dietary creatine. Amino Acids. 2016;48(8):1785–1791. doi: 10.1007/s00726-016-2188-1.
    1. Paddon-Jones D, Borsheim E, Wolfe RR. Potential ergogenic effects of arginine and creatine supplementation. J Nutr. 2004;134(10 Suppl):2888S–2894S.
    1. Braissant O, et al. Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids. 2011;40(5):1315–1324. doi: 10.1007/s00726-011-0852-z.
    1. Wyss M, et al. Creatine and creatine kinase in health and disease--a bright future ahead? Subcell Biochem. 2007;46:309–334. doi: 10.1007/978-1-4020-6486-9_16.
    1. Braissant O, et al. Dissociation of AGAT, GAMT and SLC6A8 in CNS: relevance to creatine deficiency syndromes. Neurobiol Dis. 2010;37(2):423–433. doi: 10.1016/j.nbd.2009.10.022.
    1. Beard E, Braissant O. Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem. 2010;115(2):297–313. doi: 10.1111/j.1471-4159.2010.06935.x.
    1. Sykut-Cegielska J, et al. Biochemical and clinical characteristics of creatine deficiency syndromes. Acta Biochim Pol. 2004;51(4):875–882.
    1. Ganesan V, et al. Guanidinoacetate methyltransferase deficiency: new clinical features. Pediatr Neurol. 1997;17(2):155–157. doi: 10.1016/S0887-8994(97)00083-0.
    1. Hanna-El-Daher L, Braissant O. Creatine synthesis and exchanges between brain cells: what can be learned from human creatine deficiencies and various experimental models? Amino Acids. 2016;48(8):1877–1895. doi: 10.1007/s00726-016-2189-0.
    1. Benton D, Donohoe R. The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivores. Br J Nutr. 2011;105(7):1100–1105. doi: 10.1017/S0007114510004733.
    1. Burke DG, et al. Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med Sci Sports Exerc. 2003;35(11):1946–1955. doi: 10.1249/01.MSS.0000093614.17517.79.
    1. Kreider RB, et al. Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Mol Cell Biochem. 2003;244(1–2):95–104. doi: 10.1023/A:1022469320296.
    1. Bender A, Klopstock T. Creatine for neuroprotection in neurodegenerative disease: end of story? Amino Acids. 2016;48(8):1929–1940. doi: 10.1007/s00726-015-2165-0.
    1. Schlattner U, et al. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids. 2016;48(8):1751–1774. doi: 10.1007/s00726-016-2267-3.
    1. Ydfors M, et al. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise. J Physiol. 2016;594(11):3127–3140. doi: 10.1113/JP271259.
    1. Wallimann T, Schlosser T, Eppenberger HM. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. J Biol Chem. 1984;259(8):5238–5246.
    1. Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 2011;40(5):1271–1296. doi: 10.1007/s00726-011-0877-3.
    1. Wallimann T, et al. Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors. 1998;8(3–4):229–234. doi: 10.1002/biof.5520080310.
    1. Tarnopolsky MA, et al. Creatine transporter and mitochondrial creatine kinase protein content in myopathies. Muscle Nerve. 2001;24(5):682–688. doi: 10.1002/mus.1055.
    1. Santacruz L, Jacobs DO. Structural correlates of the creatine transporter function regulation: the undiscovered country. Amino Acids. 2016;48(8):2049–2055. doi: 10.1007/s00726-016-2206-3.
    1. Braissant O. Creatine and guanidinoacetate transport at blood–brain and blood-cerebrospinal fluid barriers. J Inherit Metab Dis. 2012;35(4):655–664. doi: 10.1007/s10545-011-9433-2.
    1. Campos-Ferraz PL, et al. Exploratory studies of the potential anti-cancer effects of creatine. Amino Acids. 2016;48(8):1993–2001. doi: 10.1007/s00726-016-2180-9.
    1. Balestrino M, et al. Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease. Amino Acids. 2016;48(8):1955–1967. doi: 10.1007/s00726-016-2173-8.
    1. Saraiva AL, et al. Creatine reduces oxidative stress markers but does not protect against seizure susceptibility after severe traumatic brain injury. Brain Res Bull. 2012;87(2–3):180–186. doi: 10.1016/j.brainresbull.2011.10.010.
    1. Rahimi R. Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. J Strength Cond Res. 2011;25(12):3448–3455. doi: 10.1519/JSC.0b013e3182162f2b.
    1. Riesberg LA, et al. Beyond muscles: the untapped potential of creatine. Int Immunopharmacol. 2016;37:31–42. doi: 10.1016/j.intimp.2015.12.034.
    1. Candow DG, Chilibeck PD, Forbes SC. Creatine supplementation and aging musculoskeletal health. Endocrine. 2014;45(3):354–361. doi: 10.1007/s12020-013-0070-4.
    1. Tarnopolsky MA. Clinical use of creatine in neuromuscular and neurometabolic disorders. Subcell Biochem. 2007;46:183–204. doi: 10.1007/978-1-4020-6486-9_10.
    1. Kley RA, Tarnopolsky MA, Vorgerd M. Creatine for treating muscle disorders. Cochrane Database Syst Rev. 2011;2:CD004760.
    1. Tarnopolsky MA. Potential benefits of creatine monohydrate supplementation in the elderly. Curr Opin Clin Nutr Metab Care. 2000;3(6):497–502. doi: 10.1097/00075197-200011000-00013.
    1. Candow DG, et al. Strategic creatine supplementation and resistance training in healthy older adults. Appl Physiol Nutr Metab. 2015;40(7):689–694. doi: 10.1139/apnm-2014-0498.
    1. Moon A, et al. Creatine supplementation: can it improve quality of life in the elderly without associated resistance training? Curr Aging Sci. 2013;6(3):251–257. doi: 10.2174/1874609806666131204153102.
    1. Rawson ES, Venezia AC. Use of creatine in the elderly and evidence for effects on cognitive function in young and old. Amino Acids. 2011;40(5):1349–1362. doi: 10.1007/s00726-011-0855-9.
    1. Candow DG. Sarcopenia: current theories and the potential beneficial effect of creatine application strategies. Biogerontology. 2011;12(4):273–281. doi: 10.1007/s10522-011-9327-6.
    1. Candow DG, Chilibeck PD. Potential of creatine supplementation for improving aging bone health. J Nutr Health Aging. 2010;14(2):149–153. doi: 10.1007/s12603-009-0224-5.
    1. Kreider RB. Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003;244(1–2):89–94. doi: 10.1023/A:1022465203458.
    1. Casey A, et al. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am J Physiol. 1996;271(1 Pt 1):E31–E37.
    1. Greenhaff PL, et al. Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Clin Sci (Lond) 1993;84(5):565–571. doi: 10.1042/cs0840565.
    1. Steenge GR, Simpson EJ, Greenhaff PL. Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. J Appl Physiol (1985) 2000;89(3):1165–1171.
    1. Greenwood M, et al. Differences in creatine retention among three nutritional formulations of oral creatine supplements. J Exerc Physiol Online. 2003;6(2):37–43.
    1. Vandenberghe K, et al. Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol (1985) 1997;83(6):2055–2063.
    1. Kim HJ, et al. Studies on the safety of creatine supplementation. Amino Acids. 2011;40(5):1409–1418. doi: 10.1007/s00726-011-0878-2.
    1. Jager R, et al. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids. 2011;40(5):1369–1383. doi: 10.1007/s00726-011-0874-6.
    1. Howard AN, Harris RC. Compositions containing creatine, U.S.P. Office, Editor. United States: United States Patent Office, United States Government; 1999.
    1. Edgar G, Shiver HE. The equilibrium between creatine and creatinine, in aqueous solution: the effect of hydrogen ion. J Am Chem Soc. 1925;47:1179–1188. doi: 10.1021/ja01681a040.
    1. Deldicque L, et al. Kinetics of creatine ingested as a food ingredient. Eur J Appl Physiol. 2008;102(2):133–143. doi: 10.1007/s00421-007-0558-9.
    1. Persky AM, Brazeau GA, Hochhaus G. Pharmacokinetics of the dietary supplement creatine. Clin Pharmacokinet. 2003;42(6):557–574. doi: 10.2165/00003088-200342060-00005.
    1. Kreider RB, et al. Effects of serum creatine supplementation on muscle creatine content. J Exerc Physiologyonline. 2003;6(4):24–33.
    1. Spillane M, et al. The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. J Int Soc Sports Nutr. 2009;6:6. doi: 10.1186/1550-2783-6-6.
    1. Jagim AR, et al. A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate. J Int Soc Sports Nutr. 2012;9(1):43. doi: 10.1186/1550-2783-9-43.
    1. Galvan E, et al. Acute and chronic safety and efficacy of dose dependent creatine nitrate supplementation and exercise performance. J Int Soc Sports Nutr. 2016;13:12. doi: 10.1186/s12970-016-0124-0.
    1. Cornish SM, Chilibeck PD, Burke DG. The effect of creatine monohydrate supplementation on sprint skating in ice-hockey players. J Sports Med Phys Fitness. 2006;46(1):90–98.
    1. Dawson B, Vladich T, Blanksby BA. Effects of 4 weeks of creatine supplementation in junior swimmers on freestyle sprint and swim bench performance. J Strength Cond Res. 2002;16(4):485–490.
    1. Grindstaff PD, et al. Effects of creatine supplementation on repetitive sprint performance and body composition in competitive swimmers. Int J Sport Nutr. 1997;7(4):330–346. doi: 10.1123/ijsn.7.4.330.
    1. Juhasz I, et al. Creatine supplementation improves the anaerobic performance of elite junior fin swimmers. Acta Physiol Hung. 2009;96(3):325–336. doi: 10.1556/APhysiol.96.2009.3.6.
    1. Silva AJ, et al. Effect of creatine on swimming velocity, body composition and hydrodynamic variables. J Sports Med Phys Fitness. 2007;47(1):58–64.
    1. Kreider RB, et al. Effects of creatine supplementation on body composition, strength, and sprint performance. Med Sci Sports Exerc. 1998;30(1):73–82. doi: 10.1097/00005768-199801000-00011.
    1. Stone MH, et al. Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players. Int J Sport Nutr. 1999;9(2):146–165. doi: 10.1123/ijsn.9.2.146.
    1. Bemben MG, et al. Creatine supplementation during resistance training in college football athletes. Med Sci Sports Exerc. 2001;33(10):1667–1673. doi: 10.1097/00005768-200110000-00009.
    1. Hoffman J, et al. Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. Int J Sport Nutr Exerc Metab. 2006;16(4):430–446. doi: 10.1123/ijsnem.16.4.430.
    1. Chilibeck PD, Magnus C, Anderson M. Effect of in-season creatine supplementation on body composition and performance in rugby union football players. Appl Physiol Nutr Metab. 2007;32(6):1052–1057. doi: 10.1139/H07-072.
    1. Claudino JG, et al. Creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players. J Int Soc Sports Nutr. 2014;11:32. doi: 10.1186/1550-2783-11-32.
    1. Kerksick CM, et al. Impact of differing protein sources and a creatine containing nutritional formula after 12 weeks of resistance training. Nutrition. 2007;23(9):647–656. doi: 10.1016/j.nut.2007.06.015.
    1. Kerksick CM, et al. The effects of creatine monohydrate supplementation with and without D-pinitol on resistance training adaptations. J Strength Cond Res. 2009;23(9):2673–2682. doi: 10.1519/JSC.0b013e3181b3e0de.
    1. Volek JS, et al. Creatine supplementation enhances muscular performance during high-intensity resistance exercise. J Am Diet Assoc. 1997;97(7):765–770. doi: 10.1016/S0002-8223(97)00189-2.
    1. Volek JS, et al. Physiological responses to short-term exercise in the heat after creatine loading. Med Sci Sports Exerc. 2001;33(7):1101–1108. doi: 10.1097/00005768-200107000-00006.
    1. Volek JS, et al. The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. Eur J Appl Physiol. 2004;91(5–6):628–637. doi: 10.1007/s00421-003-1031-z.
    1. Kreider RB, et al. ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr. 2010;7:7. doi: 10.1186/1550-2783-7-7.
    1. Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab. 2003;13(2):198–226. doi: 10.1123/ijsnem.13.2.198.
    1. Devries MC, Phillips SM. Creatine supplementation during resistance training in older adults-a meta-analysis. Med Sci Sports Exerc. 2014;46(6):1194–1203. doi: 10.1249/MSS.0000000000000220.
    1. Lanhers C, et al. Creatine supplementation and lower limb strength performance: a systematic review and meta-analyses. Sports Med. 2015;45(9):1285–1294. doi: 10.1007/s40279-015-0337-4.
    1. Wiroth JB, et al. Effects of oral creatine supplementation on maximal pedalling performance in older adults. Eur J Appl Physiol. 2001;84(6):533–539. doi: 10.1007/s004210000370.
    1. McMorris T, et al. Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2007;14(5):517–528. doi: 10.1080/13825580600788100.
    1. Rawson ES, Clarkson PM. Acute creatine supplementation in older men. Int J Sports Med. 2000;21(1):71–75. doi: 10.1055/s-2000-8859.
    1. Aguiar AF, et al. Long-term creatine supplementation improves muscular performance during resistance training in older women. Eur J Appl Physiol. 2013;113(4):987–996. doi: 10.1007/s00421-012-2514-6.
    1. Tarnopolsky MA, MacLennan DP. Creatine monohydrate supplementation enhances high-intensity exercise performance in males and females. Int J Sport Nutr Exerc Metab. 2000;10(4):452–463. doi: 10.1123/ijsnem.10.4.452.
    1. Ziegenfuss TN, et al. Effect of creatine loading on anaerobic performance and skeletal muscle volume in NCAA division I athletes. Nutrition. 2002;18(5):397–402. doi: 10.1016/S0899-9007(01)00802-4.
    1. Ayoama R, Hiruma E, Sasaki H. Effects of creatine loading on muscular strength and endurance of female softball players. J Sports Med Phys Fitness. 2003;43(4):481–487.
    1. Johannsmeyer S, et al. Effect of creatine supplementation and drop-set resistance training in untrained aging adults. Exp Gerontol. 2016;83:112–119. doi: 10.1016/j.exger.2016.08.005.
    1. Ramirez-Campillo R, et al. Effects of plyometric training and creatine supplementation on maximal-intensity exercise and endurance in female soccer players. J Sci Med Sport. 2016;19(8):682–687. doi: 10.1016/j.jsams.2015.10.005.
    1. Rodriguez NR, et al. Position of the American Dietetic Association, dietitians of Canada, and the American college of sports medicine: nutrition and athletic performance. J Am Diet Assoc. 2009;109(3):509–527. doi: 10.1016/j.jada.2009.01.005.
    1. Thomas DT, Erdman KA, Burke LM. Position of the academy of nutrition and dietetics, dietitians of Canada, and the American college of sports medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501–528. doi: 10.1016/j.jand.2015.12.006.
    1. Fraczek B, et al. Prevalence of the use of effective ergogenic aids among professional athletes. Rocz Panstw Zakl Hig. 2016;67(3):271–278.
    1. Brown D, Wyon M. An international study on dietary supplementation use in dancers. Med Probl Perform Art. 2014;29(4):229–234.
    1. McGuine TA, Sullivan JC, Bernhardt DT. Creatine supplementation in high school football players. Clin J Sport Med. 2001;11(4):247–253. doi: 10.1097/00042752-200110000-00007.
    1. Mason MA, et al. Use of nutritional supplements by high school football and volleyball players. Iowa Orthop J. 2001;21:43–48.
    1. LaBotz M, Smith BW. Creatine supplement use in an NCAA division I athletic program. Clin J Sport Med. 1999;9(3):167–169. doi: 10.1097/00042752-199907000-00009.
    1. Sheppard HL, et al. Use of creatine and other supplements by members of civilian and military health clubs: a cross-sectional survey. Int J Sport Nutr Exerc Metab. 2000;10(3):245–259. doi: 10.1123/ijsnem.10.3.245.
    1. Knapik JJ, et al. Prevalence of dietary supplement use by athletes: systematic review and meta-analysis. Sports Med. 2016;46(1):103–123. doi: 10.1007/s40279-015-0387-7.
    1. Casey A, et al. Supplement use by UK-based British army soldiers in training. Br J Nutr. 2014;112(7):1175–1184. doi: 10.1017/S0007114514001597.
    1. Huang SH, Johnson K, Pipe AL. The use of dietary supplements and medications by Canadian athletes at the Atlanta and Sydney olympic games. Clin J Sport Med. 2006;16(1):27–33. doi: 10.1097/01.jsm.0000194766.35443.9c.
    1. Scofield DE, Unruh S. Dietary supplement use among adolescent athletes in central Nebraska and their sources of information. J Strength Cond Res. 2006;20(2):452–455.
    1. NCAA National Study of Substance Use Habits of College Student-Athletes. 2014. [cited 2017 March 5, 2017]; Available from: . Accessed 22 Apr 2015.
    1. Nelson AG, et al. Muscle glycogen supercompensation is enhanced by prior creatine supplementation. Med Sci Sports Exerc. 2001;33(7):1096–1100. doi: 10.1097/00005768-200107000-00005.
    1. Cooke MB, et al. Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals. J Int Soc Sports Nutr. 2009;6:13. doi: 10.1186/1550-2783-6-13.
    1. Santos RV, et al. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30 km race. Life Sci. 2004;75(16):1917–1924. doi: 10.1016/j.lfs.2003.11.036.
    1. Deminice R, et al. Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition. 2013;29(9):1127–1132. doi: 10.1016/j.nut.2013.03.003.
    1. Kreider RB, et al. Effects of ingesting supplements designed to promote lean tissue accretion on body composition during resistance training. Int J Sport Nutr. 1996;6(3):234–246. doi: 10.1123/ijsn.6.3.234.
    1. Kreider RB, et al. Effects of nutritional supplementation during off-season college football training on body composition and strength. J Exerc Physiol Online. 1999;2(2):24–39.
    1. Earnest CP, et al. The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Physiol Scand. 1995;153(2):207–209. doi: 10.1111/j.1748-1716.1995.tb09854.x.
    1. Greenwood M, et al. Creatine supplementation during college football training does not increase the incidence of cramping or injury. Mol Cell Biochem. 2003;244(1–2):83–88. doi: 10.1023/A:1022413202549.
    1. Greenwood M, et al. Cramping and injury incidence in collegiate football players Are reduced by creatine supplementation. J Athl Train. 2003;38(3):216–219.
    1. Cancela P, et al. Creatine supplementation does not affect clinical health markers in football players. Br J Sports Med. 2008;42(9):731–735. doi: 10.1136/bjsm.2007.030700.
    1. Schroder H, Terrados N, Tramullas A. Risk assessment of the potential side effects of long-term creatine supplementation in team sport athletes. Eur J Nutr. 2005;44(4):255–261. doi: 10.1007/s00394-004-0519-6.
    1. Rosene JM, Whitman SA, Fogarty TD. A comparison of thermoregulation with creatine supplementation between the sexes in a thermoneutral environment. J Athl Train. 2004;39(1):50–55.
    1. Twycross-Lewis R, et al. The effects of creatine supplementation on thermoregulation and physical (cognitive) performance: a review and future prospects. Amino Acids. 2016;48(8):1843–1855. doi: 10.1007/s00726-016-2237-9.
    1. Watson G, et al. Creatine use and exercise heat tolerance in dehydrated men. J Athl Train. 2006;41(1):18–29.
    1. Weiss BA, Powers ME. Creatine supplementation does not impair the thermoregulatory response during a bout of exercise in the heat. J Sports Med Phys Fitness. 2006;46(4):555–563.
    1. Wright GA, Grandjean PW, Pascoe DD. The effects of creatine loading on thermoregulation and intermittent sprint exercise performance in a hot humid environment. J Strength Cond Res. 2007;21(3):655–660.
    1. Beis LY, et al. The effects of creatine and glycerol hyperhydration on running economy in well trained endurance runners. J Int Soc Sports Nutr. 2011;8(1):24. doi: 10.1186/1550-2783-8-24.
    1. Easton C, et al. The effects of a novel “fluid loading” strategy on cardiovascular and haematological responses to orthostatic stress. Eur J Appl Physiol. 2009;105(6):899–908. doi: 10.1007/s00421-008-0976-3.
    1. Easton C, Turner S, Pitsiladis YP. Creatine and glycerol hyperhydration in trained subjects before exercise in the heat. Int J Sport Nutr Exerc Metab. 2007;17(1):70–91. doi: 10.1123/ijsnem.17.1.70.
    1. Kilduff LP, et al. The effects of creatine supplementation on cardiovascular, metabolic, and thermoregulatory responses during exercise in the heat in endurance-trained humans. Int J Sport Nutr Exerc Metab. 2004;14(4):443–460. doi: 10.1123/ijsnem.14.4.443.
    1. Polyviou TP, et al. Effects of glycerol and creatine hyperhydration on doping-relevant blood parameters. Nutrients. 2012;4(9):1171–1186. doi: 10.3390/nu4091171.
    1. Polyviou TP, et al. The effects of hyperhydrating supplements containing creatine and glucose on plasma lipids and insulin sensitivity in endurance-trained athletes. J Amino Acids. 2015;2015:352458. doi: 10.1155/2015/352458.
    1. Polyviou TP, et al. Thermoregulatory and cardiovascular responses to creatine, glycerol and alpha lipoic acid in trained cyclists. J Int Soc Sports Nutr. 2012;9(1):29. doi: 10.1186/1550-2783-9-29.
    1. Lopez RM, et al. Does creatine supplementation hinder exercise heat tolerance or hydration status? a systematic review with meta-analyses. J Athl Train. 2009;44(2):215–223. doi: 10.4085/1062-6050-44.2.215.
    1. Rosene JM, et al. The effects of creatine supplementation on thermoregulation and isokinetic muscular performance following acute (3-day) supplementation. J Sports Med Phys Fitness. 2015;55(12):1488–1496.
    1. Dalbo VJ, et al. Putting to rest the myth of creatine supplementation leading to muscle cramps and dehydration. Br J Sports Med. 2008;42(7):567–573. doi: 10.1136/bjsm.2007.042473.
    1. Hespel P, Derave W. Ergogenic effects of creatine in sports and rehabilitation. Subcell Biochem. 2007;46:245–259. doi: 10.1021/bi061646s.
    1. Hespel P, et al. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol. 2001;536(Pt 2):625–633. doi: 10.1111/j.1469-7793.2001.0625c.xd.
    1. Op’t Eijnde B, et al. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes. 2001;50(1):18–23. doi: 10.2337/diabetes.50.1.18.
    1. Jacobs PL, et al. Oral creatine supplementation enhances upper extremity work capacity in persons with cervical-level spinal cord injury. Arch Phys Med Rehabil. 2002;83(1):19–23. doi: 10.1053/apmr.2002.26829.
    1. Tyler TF, et al. The effect of creatine supplementation on strength recovery after anterior cruciate ligament (ACL) reconstruction: a randomized, placebo-controlled, double-blind trial. Am J Sports Med. 2004;32(2):383–388. doi: 10.1177/0363546503261731.
    1. Perret C, Mueller G, Knecht H. Influence of creatine supplementation on 800 m wheelchair performance: a pilot study. Spinal Cord. 2006;44(5):275–279. doi: 10.1038/sj.sc.3101840.
    1. Kley RA, Vorgerd M, Tarnopolsky MA. Creatine for treating muscle disorders. Cochrane Database Syst Rev. 2007;1:CD004760.
    1. Sullivan PG, et al. Dietary supplement creatine protects against traumatic brain injury. Ann Neurol. 2000;48(5):723–729. doi: 10.1002/1531-8249(200011)48:5<723::AID-ANA5>;2-W.
    1. Hausmann ON, et al. Protective effects of oral creatine supplementation on spinal cord injury in rats. Spinal Cord. 2002;40(9):449–456. doi: 10.1038/sj.sc.3101330.
    1. Prass K, et al. Improved reperfusion and neuroprotection by creatine in a mouse model of stroke. J Cereb Blood Flow Metab. 2007;27(3):452–459. doi: 10.1038/sj.jcbfm.9600351.
    1. Adcock KH, et al. Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev Neurosci. 2002;24(5):382–388. doi: 10.1159/000069043.
    1. Zhu S, et al. Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J Neurosci. 2004;24(26):5909–5912. doi: 10.1523/JNEUROSCI.1278-04.2004.
    1. Allah Yar R, Akbar A, Iqbal F. Creatine monohydrate supplementation for 10 weeks mediates neuroprotection and improves learning/memory following neonatal hypoxia ischemia encephalopathy in female albino mice. Brain Res. 2015;1595:92–100. doi: 10.1016/j.brainres.2014.11.017.
    1. Rabchevsky AG, et al. Creatine diet supplement for spinal cord injury: influences on functional recovery and tissue sparing in rats. J Neurotrauma. 2003;20(7):659–669. doi: 10.1089/089771503322144572.
    1. Freire Royes LF, Cassol G. The effects of Creatine supplementation and physical exercise on traumatic brain injury. Mini Rev Med Chem. 2016;16(1):29–39. doi: 10.2174/1389557515666150722101926.
    1. Stockler-Ipsiroglu S, van Karnebeek CD. Cerebral creatine deficiencies: a group of treatable intellectual developmental disorders. Semin Neurol. 2014;34(3):350–356. doi: 10.1055/s-0034-1386772.
    1. Longo N, et al. Disorders of creatine transport and metabolism. Am J Med Genet C Semin Med Genet. 2011;157C(1):72–78. doi: 10.1002/ajmg.c.30292.
    1. Nasrallah F, Feki M, Kaabachi N. Creatine and creatine deficiency syndromes: biochemical and clinical aspects. Pediatr Neurol. 2010;42(3):163–171. doi: 10.1016/j.pediatrneurol.2009.07.015.
    1. Mercimek-Mahmutoglu S, et al. GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurology. 2006;67(3):480–484. doi: 10.1212/.
    1. Stromberger C, Bodamer OA, Stockler-Ipsiroglu S. Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. J Inherit Metab Dis. 2003;26(2–3):299–308. doi: 10.1023/A:1024453704800.
    1. Battini R, et al. Arginine:glycine amidinotransferase (AGAT) deficiency in a newborn: early treatment can prevent phenotypic expression of the disease. J Pediatr. 2006;148(6):828–830. doi: 10.1016/j.jpeds.2006.01.043.
    1. Stockler-Ipsiroglu S, et al. Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab. 2014;111(1):16–25. doi: 10.1016/j.ymgme.2013.10.018.
    1. Valtonen M, et al. Central nervous system involvement in gyrate atrophy of the choroid and retina with hyperornithinaemia. J Inherit Metab Dis. 1999;22(8):855–866. doi: 10.1023/A:1005602405349.
    1. Nanto-Salonen K, et al. Reduced brain creatine in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology. 1999;53(2):303–307. doi: 10.1212/WNL.53.2.303.
    1. Heinanen K, et al. Creatine corrects muscle 31P spectrum in gyrate atrophy with hyperornithinaemia. Eur J Clin Invest. 1999;29(12):1060–1065. doi: 10.1046/j.1365-2362.1999.00569.x.
    1. Vannas-Sulonen K, et al. Gyrate atrophy of the choroid and retina. A five-year follow-up of creatine supplementation. Ophthalmology. 1985;92(12):1719–1727. doi: 10.1016/S0161-6420(85)34098-8.
    1. Sipila I, et al. Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. N Engl J Med. 1981;304(15):867–870. doi: 10.1056/NEJM198104093041503.
    1. Evangeliou A, et al. Clinical applications of creatine supplementation on paediatrics. Curr Pharm Biotechnol. 2009;10(7):683–690. doi: 10.2174/138920109789542075.
    1. Verbruggen KT, et al. Global developmental delay in guanidionacetate methyltransferase deficiency: differences in formal testing and clinical observation. Eur J Pediatr. 2007;166(9):921–925. doi: 10.1007/s00431-006-0340-8.
    1. Ensenauer R, et al. Guanidinoacetate methyltransferase deficiency: differences of creatine uptake in human brain and muscle. Mol Genet Metab. 2004;82(3):208–213. doi: 10.1016/j.ymgme.2004.04.005.
    1. Ogborn DI, et al. Effects of creatine and exercise on skeletal muscle of FRG1-transgenic mice. Can J Neurol Sci. 2012;39(2):225–231. doi: 10.1017/S0317167100013275.
    1. Louis M, et al. Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve. 2003;27(5):604–610. doi: 10.1002/mus.10355.
    1. Banerjee B, et al. Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: a randomized, placebo-controlled 31P MRS study. Magn Reson Imaging. 2010;28(5):698–707. doi: 10.1016/j.mri.2010.03.008.
    1. Felber S, et al. Oral creatine supplementation in Duchenne muscular dystrophy: a clinical and 31P magnetic resonance spectroscopy study. Neurol Res. 2000;22(2):145–150. doi: 10.1080/01616412.2000.11741051.
    1. Radley HG, et al. Duchenne muscular dystrophy: focus on pharmaceutical and nutritional interventions. Int J Biochem Cell Biol. 2007;39(3):469–477. doi: 10.1016/j.biocel.2006.09.009.
    1. Tarnopolsky MA, et al. Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology. 2004;62(10):1771–1777. doi: 10.1212/01.WNL.0000125178.18862.9D.
    1. Adhihetty PJ, Beal MF. Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases. Neuromolecular Med. 2008;10(4):275–290. doi: 10.1007/s12017-008-8053-y.
    1. Verbessem P, et al. Creatine supplementation in Huntington’s disease: a placebo-controlled pilot trial. Neurology. 2003;61(7):925–930. doi: 10.1212/01.WNL.0000090629.40891.4B.
    1. Dedeoglu A, et al. Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. J Neurochem. 2003;85(6):1359–1367. doi: 10.1046/j.1471-4159.2003.01706.x.
    1. Andreassen OA, et al. Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol Dis. 2001;8(3):479–491. doi: 10.1006/nbdi.2001.0406.
    1. Ferrante RJ, et al. Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci. 2000;20(12):4389–4397.
    1. Matthews RT, et al. Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci. 1998;18(1):156–163.
    1. Bender A, et al. Long-term creatine supplementation is safe in aged patients with Parkinson disease. Nutr Res. 2008;28(3):172–178. doi: 10.1016/j.nutres.2008.01.001.
    1. Hass CJ, Collins MA, Juncos JL. Resistance training with creatine monohydrate improves upper-body strength in patients with Parkinson disease: a randomized trial. Neurorehabil Neural Repair. 2007;21(2):107–115. doi: 10.1177/1545968306293449.
    1. Bender A, et al. Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology. 2006;67(7):1262–1264. doi: 10.1212/01.wnl.0000238518.34389.12.
    1. Komura K, et al. Effectiveness of creatine monohydrate in mitochondrial encephalomyopathies. Pediatr Neurol. 2003;28(1):53–58. doi: 10.1016/S0887-8994(02)00469-1.
    1. Tarnopolsky MA, Parise G. Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve. 1999;22(9):1228–1233. doi: 10.1002/(SICI)1097-4598(199909)22:9<1228::AID-MUS9>;2-6.
    1. Tarnopolsky MA, Roy BD, MacDonald JR. A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve. 1997;20(12):1502–1509. doi: 10.1002/(SICI)1097-4598(199712)20:12<1502::AID-MUS4>;2-C.
    1. Andreassen OA, et al. Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J Neurochem. 2001;77(2):383–390. doi: 10.1046/j.1471-4159.2001.00188.x.
    1. Choi JK, et al. Magnetic resonance spectroscopy of regional brain metabolite markers in FALS mice and the effects of dietary creatine supplementation. Eur J Neurosci. 2009;30(11):2143–2150. doi: 10.1111/j.1460-9568.2009.07015.x.
    1. Derave W, et al. Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: effects of creatine treatment. Neurobiol Dis. 2003;13(3):264–272. doi: 10.1016/S0969-9961(03)00041-X.
    1. Drory VE, Gross D. No effect of creatine on respiratory distress in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2002;3(1):43–46. doi: 10.1080/146608202317576534.
    1. Ellis AC, Rosenfeld J. The role of creatine in the management of amyotrophic lateral sclerosis and other neurodegenerative disorders. CNS Drugs. 2004;18(14):967–980. doi: 10.2165/00023210-200418140-00002.
    1. Mazzini L, et al. Effects of creatine supplementation on exercise performance and muscular strength in amyotrophic lateral sclerosis: preliminary results. J Neurol Sci. 2001;191(1–2):139–144. doi: 10.1016/S0022-510X(01)00611-6.
    1. Vielhaber S, et al. Effect of creatine supplementation on metabolite levels in ALS motor cortices. Exp Neurol. 2001;172(2):377–382. doi: 10.1006/exnr.2001.7797.
    1. Hultman J, et al. Myocardial energy restoration of ischemic damage by administration of phosphoenolpyruvate during reperfusion. A study in a paracorporeal rat heart model. Eur Surg Res. 1983;15(4):200–207. doi: 10.1159/000128354.
    1. Thelin S, et al. Metabolic and functional effects of creatine phosphate in cardioplegic solution. Studies on rat hearts during and after normothermic ischemia. Scand J Thorac Cardiovasc Surg. 1987;21(1):39–45. doi: 10.3109/14017438709116917.
    1. Osbakken M, et al. Creatine and cyclocreatine effects on ischemic myocardium: 31P nuclear magnetic resonance evaluation of intact heart. Cardiology. 1992;80(3–4):184–195. doi: 10.1159/000175002.
    1. Thorelius J, et al. Biochemical and functional effects of creatine phosphate in cardioplegic solution during aortic valve surgery—a clinical study. Thorac Cardiovasc Surg. 1992;40(1):10–13. doi: 10.1055/s-2007-1020103.
    1. Boudina S, et al. Alteration of mitochondrial function in a model of chronic ischemia in vivo in rat heart. Am J Physiol Heart Circ Physiol. 2002;282(3):H821–H831. doi: 10.1152/ajpheart.00471.2001.
    1. Laclau MN, et al. Cardioprotection by ischemic preconditioning preserves mitochondrial function and functional coupling between adenine nucleotide translocase and creatine kinase. J Mol Cell Cardiol. 2001;33(5):947–956. doi: 10.1006/jmcc.2001.1357.
    1. Conorev EA, Sharov VG, Saks VA. Improvement in contractile recovery of isolated rat heart after cardioplegic ischaemic arrest with endogenous phosphocreatine: involvement of antiperoxidative effect? Cardiovasc Res. 1991;25(2):164–171. doi: 10.1093/cvr/25.2.164.
    1. Sharov VG, et al. Protection of ischemic myocardium by exogenous phosphocreatine. I. Morphologic and phosphorus 31-nuclear magnetic resonance studies. J Thorac Cardiovasc Surg. 1987;94(5):749–761.
    1. Anyukhovsky EP, et al. Effect of phosphocreatine and related compounds on the phospholipid metabolism of ischemic heart. Biochem Med Metab Biol. 1986;35(3):327–334. doi: 10.1016/0885-4505(86)90090-3.
    1. Sharov VG, et al. Protection of ischemic myocardium by exogenous phosphocreatine (neoton): pharmacokinetics of phosphocreatine, reduction of infarct size, stabilization of sarcolemma of ischemic cardiomyocytes, and antithrombotic action. Biochem Med Metab Biol. 1986;35(1):101–114. doi: 10.1016/0885-4505(86)90064-2.
    1. Gualano B, et al. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino Acids. 2016;48(8):1793–1805. doi: 10.1007/s00726-016-2239-7.
    1. Earnest CP, Almada AL, Mitchell TL. High-performance capillary electrophoresis-pure creatine monohydrate reduces blood lipids in men and women. Clin Sci (Lond) 1996;91(1):113–118. doi: 10.1042/cs0910113.
    1. Deminice R, et al. Creatine supplementation prevents fatty liver in rats fed choline-deficient diet: a burden of one-carbon and fatty acid metabolism. J Nutr Biochem. 2015;26(4):391–397. doi: 10.1016/j.jnutbio.2014.11.014.
    1. Deminice R, et al. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats. Amino Acids. 2016;48(8):2015–2024. doi: 10.1007/s00726-016-2172-9.
    1. Lawler JM, et al. Direct antioxidant properties of creatine. Biochem Biophys Res Commun. 2002;290(1):47–52. doi: 10.1006/bbrc.2001.6164.
    1. Rakpongsiri K, Sawangkoon S. Protective effect of creatine supplementation and estrogen replacement on cardiac reserve function and antioxidant reservation against oxidative stress in exercise-trained ovariectomized hamsters. Int Heart J. 2008;49(3):343–354. doi: 10.1536/ihj.49.343.
    1. Rahimi R, et al. Effects of creatine monohydrate supplementation on exercise-induced apoptosis in athletes: a randomized, double-blind, and placebo-controlled study. J Res Med Sci. 2015;20(8):733–738. doi: 10.4103/1735-1995.168320.
    1. Deminice R, Jordao AA. Creatine supplementation decreases plasma lipid peroxidation markers and enhances anaerobic performance in rats. Redox Rep. 2015;21(1):31–36.
    1. Gualano B, et al. Creatine in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Med Sci Sports Exerc. 2011;43(5):770–778. doi: 10.1249/MSS.0b013e3181fcee7d.
    1. Op’t Eijnde B, et al. Creatine supplementation increases soleus muscle creatine content and lowers the insulinogenic index in an animal model of inherited type 2 diabetes. Int J Mol Med. 2006;17(6):1077–1084.
    1. Alves CR, et al. Creatine-induced glucose uptake in type 2 diabetes: a role for AMPK-alpha? Amino Acids. 2012;43(4):1803–1807. doi: 10.1007/s00726-012-1246-6.
    1. Smith RN, Agharkar AS, Gonzales EB. A review of creatine supplementation in age-related diseases: more than a supplement for athletes. F1000Res. 2014;3:222.
    1. Patra S, et al. A short review on creatine-creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy. Amino Acids. 2012;42(6):2319–2330. doi: 10.1007/s00726-011-0974-3.
    1. Canete S, et al. Does creatine supplementation improve functional capacity in elderly women? J Strength Cond Res. 2006;20(1):22–28.
    1. Candow DG, Chilibeck PD. Effect of creatine supplementation during resistance training on muscle accretion in the elderly. J Nutr Health Aging. 2007;11(2):185–188.
    1. Candow DG, et al. Comparison of creatine supplementation before versus after supervised resistance training in healthy older adults. Res Sports Med. 2014;22(1):61–74. doi: 10.1080/15438627.2013.852088.
    1. Candow DG, et al. Low-dose creatine combined with protein during resistance training in older men. Med Sci Sports Exerc. 2008;40(9):1645–1652. doi: 10.1249/MSS.0b013e318176b310.
    1. Chilibeck PD, et al. Effects of creatine and resistance training on bone health in postmenopausal women. Med Sci Sports Exerc. 2015;47(8):1587–1595. doi: 10.1249/MSS.0000000000000571.
    1. Neves M, Jr, et al. Beneficial effect of creatine supplementation in knee osteoarthritis. Med Sci Sports Exerc. 2011;43(8):1538–1543. doi: 10.1249/MSS.0b013e3182118592.
    1. Alves CR, et al. Creatine supplementation in fibromyalgia: a randomized, double-blind, placebo-controlled trial. Arthritis Care Res (Hoboken) 2013;65(9):1449–1459. doi: 10.1002/acr.22020.
    1. Roitman S, et al. Creatine monohydrate in resistant depression: a preliminary study. Bipolar Disord. 2007;9(7):754–758. doi: 10.1111/j.1399-5618.2007.00532.x.
    1. D’Anci KE, Allen PJ, Kanarek RB. A potential role for creatine in drug abuse? Mol Neurobiol. 2011;44(2):136–141. doi: 10.1007/s12035-011-8176-2.
    1. Toniolo RA, et al. Cognitive effects of creatine monohydrate adjunctive therapy in patients with bipolar depression: Results from a randomized, double-blind, placebo-controlled trial. J Affect Disord. 2016.
    1. Dechent P, et al. Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol. 1999;277(3 Pt 2):R698–R704.
    1. Lyoo IK, et al. Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res. 2003;123(2):87–100. doi: 10.1016/S0925-4927(03)00046-5.
    1. Pan JW, Takahashi K. Cerebral energetic effects of creatine supplementation in humans. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1745–R1750. doi: 10.1152/ajpregu.00717.2006.
    1. Watanabe A, Kato N, Kato T. Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci Res. 2002;42(4):279–285. doi: 10.1016/S0168-0102(02)00007-X.
    1. Rae C, et al. Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proc Biol Sci. 2003;270(1529):2147–2150. doi: 10.1098/rspb.2003.2492.
    1. McMorris T, et al. Creatine supplementation, sleep deprivation, cortisol, melatonin and behavior. Physiol Behav. 2007;90(1):21–28. doi: 10.1016/j.physbeh.2006.08.024.
    1. McMorris T, et al. Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology (Berl) 2006;185(1):93–103. doi: 10.1007/s00213-005-0269-z.
    1. Ling J, Kritikos M, Tiplady B. Cognitive effects of creatine ethyl ester supplementation. Behav Pharmacol. 2009;20(8):673–679. doi: 10.1097/FBP.0b013e3283323c2a.
    1. Ostojic SM. Guanidinoacetic acid as a performance-enhancing agent. Amino Acids. 2016;48(8):1867–1875. doi: 10.1007/s00726-015-2106-y.
    1. Ostojic SM, et al. Guanidinoacetic acid versus creatine for improved brain and muscle creatine levels: a superiority pilot trial in healthy men. Appl Physiol Nutr Metab. 2016;41(9):1005–1007. doi: 10.1139/apnm-2016-0178.
    1. Ellery SJ, et al. Renal dysfunction in early adulthood following birth asphyxia in male spiny mice, and its amelioration by maternal creatine supplementation during pregnancy. Pediatr Res. 2017.
    1. LaRosa DA, et al. Maternal creatine supplementation during pregnancy prevents acute and long-term deficits in skeletal muscle after birth asphyxia: a study of structure and function of hind limb muscle in the spiny mouse. Pediatr Res. 2016;80(6):852–860. doi: 10.1038/pr.2016.153.
    1. Ellery SJ, Walker DW, Dickinson H. Creatine for women: a review of the relationship between creatine and the reproductive cycle and female-specific benefits of creatine therapy. Amino Acids. 2016;48(8):1807–1817. doi: 10.1007/s00726-016-2199-y.
    1. Ellery SJ, et al. Dietary creatine supplementation during pregnancy: a study on the effects of creatine supplementation on creatine homeostasis and renal excretory function in spiny mice. Amino Acids. 2016;48(8):1819–1830. doi: 10.1007/s00726-015-2150-7.
    1. Dickinson H, et al. Creatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth. 2014;14:150. doi: 10.1186/1471-2393-14-150.
    1. Bortoluzzi VT, et al. Co-administration of creatine plus pyruvate prevents the effects of phenylalanine administration to female rats during pregnancy and lactation on enzymes activity of energy metabolism in cerebral cortex and hippocampus of the offspring. Neurochem Res. 2014;39(8):1594–1602. doi: 10.1007/s11064-014-1353-8.
    1. Vallet JL, Miles JR, Rempel LA. Effect of creatine supplementation during the last week of gestation on birth intervals, stillbirth, and preweaning mortality in pigs. J Anim Sci. 2013;91(5):2122–2132. doi: 10.2527/jas.2012-5610.
    1. Ellery SJ, et al. Creatine pretreatment prevents birth asphyxia-induced injury of the newborn spiny mouse kidney. Pediatr Res. 2013;73(2):201–208. doi: 10.1038/pr.2012.174.
    1. Dickinson H, et al. Maternal dietary creatine supplementation does not alter the capacity for creatine synthesis in the newborn spiny mouse. Reprod Sci. 2013;20(9):1096–1102. doi: 10.1177/1933719113477478.
    1. Ireland Z, et al. A maternal diet supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from birth hypoxia. Neuroscience. 2011;194:372–379. doi: 10.1016/j.neuroscience.2011.05.012.
    1. Geller AI, et al. Emergency department visits for adverse events related to dietary supplements. N Engl J Med. 2015;373(16):1531–1540. doi: 10.1056/NEJMsa1504267.
    1. Zorzela L, et al. Serious adverse events associated with pediatric complementary and alternative medicine. Eur J Integr Med. 2014;6:467–47. doi: 10.1016/j.eujim.2014.05.001.
    1. FDA. CFSAN Adverse Event Reporting System (CAERS). 2017. [cited 2017 March 27, 2017]; Available from: . Accessed 18 Apr 2017.
    1. Greenwood M, et al. Creatine supplementation patterns and perceived effects in select division I collegiate athletes. Clin J Sport Med. 2000;10(3):191–194. doi: 10.1097/00042752-200007000-00007.
    1. Hile AM, et al. Creatine supplementation and anterior compartment pressure during exercise in the heat in dehydrated men. J Athl Train. 2006;41(1):30–35.
    1. Poortmans JR, et al. Effect of short-term creatine supplementation on renal responses in men. Eur J Appl Physiol Occup Physiol. 1997;76(6):566–567. doi: 10.1007/s004210050291.
    1. Robinson TM, et al. Dietary creatine supplementation does not affect some haematological indices, or indices of muscle damage and hepatic and renal function. Br J Sports Med. 2000;34(4):284–288. doi: 10.1136/bjsm.34.4.284.
    1. Groeneveld GJ, et al. Few adverse effects of long-term creatine supplementation in a placebo-controlled trial. Int J Sports Med. 2005;26(4):307–313. doi: 10.1055/s-2004-817917.
    1. Gualano B, et al. Effects of creatine supplementation on renal function: a randomized, double-blind, placebo-controlled clinical trial. Eur J Appl Physiol. 2008;103(1):33–40. doi: 10.1007/s00421-007-0669-3.
    1. Lugaresi R, et al. Does long-term creatine supplementation impair kidney function in resistance-trained individuals consuming a high-protein diet? J Int Soc Sports Nutr. 2013;10(1):26. doi: 10.1186/1550-2783-10-26.
    1. Farquhar WB, Zambraski EJ. Effects of creatine use on the athlete’s kidney. Curr Sports Med Rep. 2002;1(2):103–106. doi: 10.1249/00149619-200204000-00007.
    1. Thorsteinsdottir B, Grande JP, Garovic VD. Acute renal failure in a young weight lifter taking multiple food supplements, including creatine monohydrate. J Ren Nutr. 2006;16(4):341–345. doi: 10.1053/j.jrn.2006.04.025.
    1. Kuehl K, Goldberg L, Elliot D, Renal insufficiency after creatine supplementation in a college football athlete (Abstract). Med Sci Sports Exerc. 1998;30:S235.
    1. Pritchard NR, Kalra PA. Renal dysfunction accompanying oral creatine supplements. Lancet. 1998;351(9111):1252–1253. doi: 10.1016/S0140-6736(05)79319-3.
    1. Barisic N, et al. Effects of oral creatine supplementation in a patient with MELAS phenotype and associated nephropathy. Neuropediatrics. 2002;33(3):157–161. doi: 10.1055/s-2002-33679.
    1. Juhn MS, Tarnopolsky M. Potential side effects of oral creatine supplementation: a critical review. Clin J Sport Med. 1998;8(4):298–304. doi: 10.1097/00042752-199810000-00007.
    1. Juhn MS. Oral creatine supplementation: separating fact from hype. Phys Sportsmed. 1999;27(5):47–89. doi: 10.3810/psm.1999.05.839.
    1. Benzi G. Is there a rationale for the use of creatine either as nutritional supplementation or drug administration in humans participating in a sport? Pharmacol Res. 2000;41(3):255–264. doi: 10.1006/phrs.1999.0618.
    1. Benzi G, Ceci A. Creatine as nutritional supplementation and medicinal product. J Sports Med Phys Fitness. 2001;41(1):1–10.
    1. Poortmans JR, Francaux M. Long-term oral creatine supplementation does not impair renal function in healthy athletes. Med Sci Sports Exerc. 1999;31(8):1108–1110. doi: 10.1097/00005768-199908000-00005.
    1. Francaux M, et al. Effect of exogenous creatine supplementation on muscle PCr metabolism. Int J Sports Med. 2000;21(2):139–145. doi: 10.1055/s-2000-11065.
    1. Poortmans JR, Francaux M. Adverse effects of creatine supplementation: fact or fiction? Sports Med. 2000;30(3):155–170. doi: 10.2165/00007256-200030030-00002.
    1. Ferreira LG, et al. Effects of creatine supplementation on body composition and renal function in rats. Med Sci Sports Exerc. 2005;37(9):1525–1529. doi: 10.1249/01.mss.0000177555.94271.44.
    1. Baracho NC, et al. Study of renal and hepatic toxicity in rats supplemented with creatine. Acta Cir Bras. 2015;30(5):313–318. doi: 10.1590/S0102-865020150050000002.
    1. Gualano B, et al. Creatine supplementation does not impair kidney function in type 2 diabetic patients: a randomized, double-blind, placebo-controlled, clinical trial. Eur J Appl Physiol. 2011;111(5):749–756. doi: 10.1007/s00421-010-1676-3.
    1. Taes YE, et al. Creatine supplementation does not decrease total plasma homocysteine in chronic hemodialysis patients. Kidney Int. 2004;66(6):2422–2428. doi: 10.1111/j.1523-1755.2004.66019.x.
    1. Shelmadine BD, et al. The effects of supplementation of creatine on total homocysteine. J Ren Nurs. 2012;4(6):278–283. doi: 10.12968/jorn.2012.4.6.278.
    1. Shelmadine BD, et al. Effects of thirty days of creatine supplementation on total homocysteine in a pilot study of end-stage renal disease patients. J Ren Nurs. 2012;4(4):6–11.
    1. Pline KA, Smith CL. The effect of creatine intake on renal function. Ann Pharmacother. 2005;39(6):1093–1096. doi: 10.1345/aph.1E628.
    1. Persky AM, Rawson ES. Safety of creatine supplementation. Subcell Biochem. 2007;46:275–289. doi: 10.1007/978-1-4020-6486-9_14.
    1. Gualano B, et al. In sickness and in health: the widespread application of creatine supplementation. Amino Acids. 2012;43(2):519–529. doi: 10.1007/s00726-011-1132-7.
    1. Williams MH. Facts and fallacies of purported ergogenic amino acid supplements. Clin Sports Med. 1999;18(3):633–649. doi: 10.1016/S0278-5919(05)70173-3.

Source: PubMed

3
Abonnieren