Transmission routes of 2019-nCoV and controls in dental practice

Xian Peng, Xin Xu, Yuqing Li, Lei Cheng, Xuedong Zhou, Biao Ren, Xian Peng, Xin Xu, Yuqing Li, Lei Cheng, Xuedong Zhou, Biao Ren

Abstract

A novel β-coronavirus (2019-nCoV) caused severe and even fetal pneumonia explored in a seafood market of Wuhan city, Hubei province, China, and rapidly spread to other provinces of China and other countries. The 2019-nCoV was different from SARS-CoV, but shared the same host receptor the human angiotensin-converting enzyme 2 (ACE2). The natural host of 2019-nCoV may be the bat Rhinolophus affinis as 2019-nCoV showed 96.2% of whole-genome identity to BatCoV RaTG13. The person-to-person transmission routes of 2019-nCoV included direct transmission, such as cough, sneeze, droplet inhalation transmission, and contact transmission, such as the contact with oral, nasal, and eye mucous membranes. 2019-nCoV can also be transmitted through the saliva, and the fetal-oral routes may also be a potential person-to-person transmission route. The participants in dental practice expose to tremendous risk of 2019-nCoV infection due to the face-to-face communication and the exposure to saliva, blood, and other body fluids, and the handling of sharp instruments. Dental professionals play great roles in preventing the transmission of 2019-nCoV. Here we recommend the infection control measures during dental practice to block the person-to-person transmission routes in dental clinics and hospitals.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Illustration of transmission routes of 2019-nCoV in dental clinics and hospitals

References

    1. Zhu Na, Zhang Dingyu, Wang Wenling, Li Xingwang, Yang Bo, Song Jingdong, Zhao Xiang, Huang Baoying, Shi Weifeng, Lu Roujian, Niu Peihua, Zhan Faxian, Ma Xuejun, Wang Dayan, Xu Wenbo, Wu Guizhen, Gao George F., Tan Wenjie. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine. 2020;382(8):727–733. doi: 10.1056/NEJMoa2001017.
    1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–473. doi: 10.1016/S0140-6736(20)30185-9.
    1. Liu, T. et al. Transmission dynamics of 2019 novel coronavirus (2019-nCoV). The Lancet. Available at SSRN: (2020).
    1. Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Guan, W.-j. et al. Clinical characteristics of 2019 novel coronavirus infection in China. Preprint at (2020).
    1. Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA10.1001/jama.2020.1585 (2020).
    1. Chen N, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Chan JF-W, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9.
    1. Li, Q. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med.10.1056/NEJMoa2001316 (2020).
    1. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature10.1038/s41586-020-2008-3 (2020).
    1. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature10.1038/s41586-020-2012-7 (2020).
    1. Gorbalenya, A. E. et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses—a statement of the Coronavirus Study Group. Preprint at (2020).
    1. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 2015;1282:1–23. doi: 10.1007/978-1-4939-2438-7_1.
    1. Gorbalenya A, Enjuanes L, Ziebuhr J, Snijder E. Nidovirales: evolving the largest RNA virus genome. Virus Res. 2006;117:17–37. doi: 10.1016/j.virusres.2006.01.017.
    1. Nakagawa, K., Lokugamage, K. G. & Makino, S. in Advances in Virus Research (ed John Ziebuhr) vol. 96, 165–192 (Academic Press, 2016).
    1. Fan Y, Zhao K, Shi Z-L, Zhou P. Bat coronaviruses in China. Viruses. 2019;11:210. doi: 10.3390/v11030210.
    1. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 2009;7:439–450. doi: 10.1038/nrmicro2147.
    1. Weiss S, Leibowitz J. Coronavirus pathogenesis. Adv. Virus Res. 2011;81:85–164. doi: 10.1016/B978-0-12-385885-6.00009-2.
    1. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23:130–137. doi: 10.1111/resp.13196.
    1. Holmes KV. SARS-associated coronavirus. N. Engl. J. Med. 2003;348:1948–1951. doi: 10.1056/NEJMp030078.
    1. Falsey AR, Walsh EE. Novel coronavirus and severe acute respiratory syndrome. Lancet. 2003;361:1312–1313. doi: 10.1016/S0140-6736(03)13084-X.
    1. The Lancet. MERS-CoV: a global challenge. Lancet. 2013;381:1960.
    1. Al-Tawfiq JA, Zumla A, Memish ZA. Coronaviruses: severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus in travelers. Curr. Opin. Infect. Dis. 2014;27:411–417. doi: 10.1097/QCO.0000000000000089.
    1. Song Zhiqi, Xu Yanfeng, Bao Linlin, Zhang Ling, Yu Pin, Qu Yajin, Zhu Hua, Zhao Wenjie, Han Yunlin, Qin Chuan. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019;11(1):59. doi: 10.3390/v11010059.
    1. de Wit, E., van Doremalen, N., Falzarano, D. & Munster, V. J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523–534 (2016).
    1. Al-Tawfiq, J. A., Zumla, A. & Memish, Z. A. Coronaviruses: severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus in travelers. Curr. Opin. Infect. Dis. 27, 411–417 (2014).
    1. Bai, Y., Nie, X. & Wen, C. Epidemic prediction of 2019-nCoV in Hubei province and comparison with SARS in Guangdong province. The lancet. Available at SSRN: (2020).
    1. Liu P, Chen W, Chen J-P. Viral metagenomics revealed sendai virus and coronavirus infection of malayan pangolins (Manis javanica) Viruses. 2019;11:979. doi: 10.3390/v11110979.
    1. Wahba, L. et al. Identification of a pangolin niche for a 2019-nCoV-like coronavirus through an extensive meta-metagenomic search. Preprint at (2020).
    1. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 2016;3:237–261. doi: 10.1146/annurev-virology-110615-042301.
    1. Hantak MP, Qing E, Earnest JT, Gallagher T. Tetraspanins: architects of viral entry and exit platforms. J. Virol. 2019;93:e01429–e01417.
    1. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4:1011–1033. doi: 10.3390/v4061011.
    1. Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J. Virol.10.1128/jvi.00127-20 (2020).
    1. Chai, X. et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. Preprint at (2020).
    1. Fan, C., Li, K., Ding, Y., Lu, W. L. & Wang, J. ACE2 expression in kidney and testis may cause kidney and testis damage after 2019-nCoV infection. Preprint at (2020).
    1. Hoffmann, M. et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. Preprint at (2020).
    1. Huang, Q. & Herrmann, A. Fast assessment of human receptor-binding capability of 2019 novel coronavirus (2019-nCoV). Preprint at (2020).
    1. Lei, C. et al. Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig. Preprint at (2020).
    1. Tian X, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes. Infect. 2020;9:382–385. doi: 10.1080/22221751.2020.1729069.
    1. Zhao, Y. et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. Preprint at (2020).
    1. Guy JL, Lambert DW, Warner FJ, Hooper NM, Turner AJ. Membrane-associated zinc peptidase families: comparing ACE and ACE2. Biochim. Biophysi. Acta. 2005;1751:2–8. doi: 10.1016/j.bbapap.2004.10.010.
    1. Lu Cheng-wei, Liu Xiu-fen, Jia Zhi-fang. 2019-nCoV transmission through the ocular surface must not be ignored. The Lancet. 2020;395(10224):e39. doi: 10.1016/S0140-6736(20)30313-5.
    1. To, K. K.-W. et al. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Diseases10.1093/cid/ciaa149 (2020).
    1. Belser JA, Rota PA, Tumpey TM. Ocular tropism of respiratory viruses. Microbiol. Mol. Biol. Rev. 2013;77:144–156. doi: 10.1128/MMBR.00058-12.
    1. Rothe, C. et al. Transmission of 2019-nCoV infection from an asymptomatic contact in germany. N. Engl. J. Med.10.1056/NEJMc2001468 (2020).
    1. Wax, R. S. & Christian, M. D. Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients. Canadian Journal of Anesthesia/Journal canadien d’anesthésie10.1007/s12630-020-01591-x (2020).
    1. Holshue, M. L. et al. First Case of 2019 Novel coronavirus in the United States. N. Engl. J. Med. 10.1056/NEJMoa2001191 (2020).
    1. Rodríguez-Morales Alfonso J., MacGregor Kirsten, Kanagarajah Sanch, Patel Dipti, Schlagenhauf Patricia. Going global – Travel and the 2019 novel coronavirus. Travel Medicine and Infectious Disease. 2020;33:101578. doi: 10.1016/j.tmaid.2020.101578.
    1. Backer, J. A., Klinkenberg, D. & Wallinga, J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Euro. Surveill. 10.2807/1560-7917.Es.2020.25.5.2000062 (2020).
    1. Liu L, et al. Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of rhesus macaques. J. Virol. 2011;85:4025–4030. doi: 10.1128/JVI.02292-10.
    1. Kampf G., Todt D., Pfaender S., Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection. 2020;104(3):246–251. doi: 10.1016/j.jhin.2020.01.022.
    1. Chen, J. Pathogenicity and transmissibility of 2019-nCoV—a quick overview and comparison with other emerging viruses. Microb. Infect.10.1016/j.micinf.2020.01.004 (2020).
    1. Cleveland JL, et al. Transmission of blood-borne pathogens in US dental health care settings: 2016 update. J. Am. Dent. Assoc. (1939) 2016;147:729–738. doi: 10.1016/j.adaj.2016.03.020.
    1. Harrel SK, Molinari J. Aerosols and splatter in dentistry: a brief review of the literature and infection control implications. J. Am. Dent. Assoc. (1939) 2004;135:429–437. doi: 10.14219/jada.archive.2004.0207.
    1. Wei J, Li Y. Airborne spread of infectious agents in the indoor environment. Am. J. Infect. Control. 2016;44:S102–S108. doi: 10.1016/j.ajic.2016.06.003.
    1. Otter JA, et al. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J. Hosp. Infect. 2016;92:235–250. doi: 10.1016/j.jhin.2015.08.027.
    1. Seto WH, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS) Lancet. 2003;361:1519–1520. doi: 10.1016/S0140-6736(03)13168-6.
    1. Samaranayake LP, Reid J, Evans D. The efficacy of rubber dam isolation in reducing atmospheric bacterial contamination. ASDC J. Dent. Child. 1989;56:442–444.
    1. Samaranayake LP, Peiris M. Severe acute respiratory syndrome and dentistry: a retrospective view. J. Am. Dent. Assoc. (1939) 2004;135:1292–1302. doi: 10.14219/jada.archive.2004.0405.
    1. Hu T, Li G, Zuo Y, Zhou X. Risk of hepatitis B virus transmission via dental handpieces and evaluation of an anti-suction device for prevention of transmission. Infect. Control Hosp. Epidemiol. 2007;28:80–82. doi: 10.1086/510808.
    1. Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science eabb2507, 10.1126/science.abb2507 (2020).
    1. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chinese Journal of Epidemiology41, 145–151 (2020).

Source: PubMed

3
Abonnieren