High-flow nasal oxygen versus noninvasive ventilation in adult patients with cystic fibrosis: a randomized crossover physiological study

Michael C Sklar, Martin Dres, Nuttapol Rittayamai, Brent West, Domenico Luca Grieco, Irene Telias, Detajin Junhasavasdikul, Michela Rauseo, Tai Pham, Fabiana Madotto, Carolyn Campbell, Elizabeth Tullis, Laurent Brochard, Michael C Sklar, Martin Dres, Nuttapol Rittayamai, Brent West, Domenico Luca Grieco, Irene Telias, Detajin Junhasavasdikul, Michela Rauseo, Tai Pham, Fabiana Madotto, Carolyn Campbell, Elizabeth Tullis, Laurent Brochard

Abstract

Background: Noninvasive ventilation (NIV) is the first-line treatment of adult patients with exacerbations of cystic fibrosis (CF). High-flow nasal oxygen therapy (HFNT) might benefit patients with hypoxemia and can reduce physiological dead space. We hypothesized that HFNT and NIV would similarly reduce work of breathing and improving breathing pattern in CF patients. Our objective was to compare the effects of HFNT versus NIV in terms of work of breathing, assessed noninvasively by the thickening fraction of the diaphragm (TFdi, measured with ultrasound), breathing pattern, transcutaneous CO2 (PtcCO2), hemodynamics, dyspnea and comfort.

Methods: Adult CF patients who had been stabilized after requiring ventilatory support for a few days were enrolled and ventilated with HFNT and NIV for 30 min in crossover random order.

Results: Fifteen patients were enrolled. Compared to baseline, HFNT, but not NIV, reduced respiratory rate (by 3 breaths/min, p = 0.01) and minute ventilation (by 2 L/min, p = 0.01). Patients also took slightly larger tidal volumes with HFNT compared to NIV (p = 0.02). TFdi per breath was similar under the two techniques and did not change from baseline. MAP increased from baseline with NIV and compared to HFNT (p ≤ 0.01). Comfort was poorer with the application of both HFNT and NIV than baseline. No differences were found for heart rate, SpO2, PtcCO2 or dyspnea.

Conclusions: In adult CF patients stabilized after indication for ventilatory support, HFNT and NIV have similar effects on diaphragmatic work per breath, but high-flow therapy confers additional physiological benefits by decreasing respiratory rate and minute ventilation.

Clinical trial registration: Ethics Committee of St. Michael's Hospital (REB #14-338) and clinicaltrial.gov (NCT02262871).

Figures

Fig. 1
Fig. 1
Study design. Fifteen cystic fibrosis patients were oxygenated with high-flow nasal cannula and noninvasive ventilation for 30 min each in random order with a 10-min washout period after each device use. All measurements were taken at baseline and after 25 min on each device. HFNT high-flow nasal therapy, NIV noninvasive ventilation
Fig. 2
Fig. 2
Individual patient changes in diaphragm thickening fraction. No significant change in diaphragm thickening fraction was observed between baseline conditions or after each device, n = 15
Fig. 3
Fig. 3
Individual patient changes in respiratory variables. a HFNT significantly reduced respiratory rate compared to baseline and b significantly increased tidal volume when compared to NIV, c HFNT significantly reduced minute ventilation compared to baseline conditions, d no differences were observed for PtcCO2, *p < 0.05 (versus baseline). HFNT high-flow nasal therapy, NIV noninvasive ventilation, PtcCO2 transcutaneous carbon dioxide, n = 15
Fig. 4
Fig. 4
Individual patient changes in symptom scores, n = 15, with some symptom scores overlapping. a Dyspnea scores were unchanged between baseline conditions and the use of either HFNT or NIV. b Compared to baseline conditions, both NIV and HFNT reduced comfort scores, *p < 0.05 (versus baseline), HFNT high-flow nasal therapy, NIV noninvasive ventilation. Dyspnea and comfort scores: (dyspnea: 0 = no dyspnea, 10 = maximal dyspnea. Comfort: 0 = maximal discomfort, 10 = very comfortable), n = 15

References

    1. Davies JC, Alton EWFW, Bush A. Cystic fibrosis. BMJ. 2007;335:1255–1259. doi: 10.1136/.
    1. Fauroux B. Why, when and how to propose noninvasive ventilation in cystic fibrosis? Minerva Anestesiol. 2011;77:1108–1114.
    1. Fauroux B, Burgel P-R, Boelle P-Y, Cracowski C, Murris-Espin M, Nove-Josserand R, et al. Practice of noninvasive ventilation for cystic fibrosis: a nationwide survey in France. Respir Care. 2008;53:1482–1489.
    1. Young AC, Wilson JW, Kotsimbos TC, Naughton MT. Randomised placebo controlled trial of non-invasive ventilation for hypercapnia in cystic fibrosis. Thorax. 2008;63:72–77. doi: 10.1136/thx.2007.082602.
    1. Hart N, Polkey MI, Clément A, Boulé M, Moxham J, Lofaso F, et al. Changes in pulmonary mechanics with increasing disease severity in children and young adults with cystic fibrosis. Am J Respir Crit Care Med. 2002;166:61–66. doi: 10.1164/rccm.2112059.
    1. Demoule A, Chevret S, Carlucci A, Kouatchet A, Jaber S, Meziani F, et al. Changing use of noninvasive ventilation in critically ill patients: trends over 15 years in francophone countries. Intensive Care Med. 2016;42:82–92. doi: 10.1007/s00134-015-4087-4.
    1. Keenan SP, Sinuff T, Cook DJ, Hill NS. Which patients with acute exacerbation of chronic obstructive pulmonary disease benefit from noninvasive positive-pressure ventilation? A systematic review of the literature. Ann Intern Med. 2003;138:861–870. doi: 10.7326/0003-4819-138-11-200306030-00007.
    1. Pisani L, Fasano L, Corcione N, Comellini V, Musti MA, Brandao M, et al. Change in pulmonary mechanics and the effect on breathing pattern of high flow oxygen therapy in stable hypercapnic COPD. Thorax. 2017;72:373–375. doi: 10.1136/thoraxjnl-2016-209673.
    1. Fraser JF, Spooner AJ, Dunster KR, Anstey CM, Corley A. Nasal high flow oxygen therapy in patients with COPD reduces respiratory rate and tissue carbon dioxide while increasing tidal and end-expiratory lung volumes: a randomised crossover trial. Thorax. 2016;71:759–761. doi: 10.1136/thoraxjnl-2015-207962.
    1. Lepere V, Messika J, La Combe B, Ricard J-D. High-flow nasal cannula oxygen supply as treatment in hypercapnic respiratory failure. Am J Emerg Med. 2016;34:1914.e1-2. doi: 10.1016/j.ajem.2016.02.020.
    1. Möller W, Celik G, Feng S, Bartenstein P, Meyer G, Oliver E, et al. Nasal high flow clears anatomical dead space in upper airway models. J Appl Physiol Bethesda Md. 1985;2015(118):1525–1532.
    1. Papazian L, Corley A, Hess D, Fraser JF, Frat J-P, Guitton C, et al. Use of high-flow nasal cannula oxygenation in ICU adults: a narrative review. Intensive Care Med. 2016;42:1336–1349. doi: 10.1007/s00134-016-4277-8.
    1. Frat J-P, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372:2185–2196. doi: 10.1056/NEJMoa1503326.
    1. Stéphan F, Barrucand B, Petit P, Rézaiguia-Delclaux S, Médard A, Delannoy B, et al. High-flow nasal oxygen vs noninvasive positive airway pressure in hypoxemic patients after cardiothoracic surgery: a randomized clinical trial. JAMA. 2015;313:2331–2339. doi: 10.1001/jama.2015.5213.
    1. Hernández G, Vaquero C, González P, Subira C, Frutos-Vivar F, Rialp G, et al. Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients: a randomized clinical trial. JAMA. 2016;315:1354–1361. doi: 10.1001/jama.2016.2711.
    1. Hernández G, Vaquero C, Colinas L, Cuena R, González P, Canabal A, et al. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA. 2016;316:1565–1574. doi: 10.1001/jama.2016.14194.
    1. Bräunlich J, Köhler M, Wirtz H. Nasal highflow improves ventilation in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:1077–1085. doi: 10.2147/COPD.S104616.
    1. Rittayamai N, Tscheikuna J, Praphruetkit N, Kijpinyochai S. Use of high-flow nasal cannula for acute dyspnea and hypoxemia in the emergency department. Respir Care. 2015;60:1377–1382. doi: 10.4187/respcare.03837.
    1. Goligher EC, Slutsky AS. Not just oxygen? Mechanisms of benefit from high-flow nasal cannula in hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195:1128–1131. doi: 10.1164/rccm.201701-0006ED.
    1. Papa GFS, Pellegrino GM, Marco FD, Imeri G, Brochard L, Goligher E, et al. A review of the ultrasound assessment of diaphragmatic function in clinical practice. Respiration. 2016;91:403–411. doi: 10.1159/000446518.
    1. Moran F, Bradley JM, Piper AJ. Non-invasive ventilation for cystic fibrosis. Cochrane Database Syst Rev. 2017;2:CD002769.
    1. Storre JH, Steurer B, Kabitz H-J, Dreher M, Windisch W. Transcutaneous Pco2 monitoring during initiation of noninvasive ventilation. Chest. 2007;132:1810–1816. doi: 10.1378/chest.07-1173.
    1. Voscopoulos C, Brayanov J, Ladd D, Lalli M, Panasyuk A, Freeman J. Special article: evaluation of a novel noninvasive respiration monitor providing continuous measurement of minute ventilation in ambulatory subjects in a variety of clinical scenarios. Anesth Analg. 2013;117:91–100. doi: 10.1213/ANE.0b013e3182918098.
    1. Vivier E, Mekontso Dessap A, Dimassi S, Vargas F, Lyazidi A, Thille AW, et al. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med. 2012;38:796–803. doi: 10.1007/s00134-012-2547-7.
    1. Umbrello M, Formenti P, Longhi D, Galimberti A, Piva I, Pezzi A, et al. Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care. 2015;19:161. doi: 10.1186/s13054-015-0894-9.
    1. Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013;39:801–810. doi: 10.1007/s00134-013-2823-1.
    1. Rittayamai N, Tscheikuna J, Rujiwit P. High-flow nasal cannula versus conventional oxygen therapy after endotracheal extubation: a randomized crossover physiologic study. Respir Care. 2014;59:485–490. doi: 10.4187/respcare.02397.
    1. Dyspnea. Mechanisms, assessment, and management: a consensus statement. American Thoracic Society. Am J Respir Crit Care Med. 1999;159:321–40.
    1. Goligher EC, Laghi F, Detsky ME, Farias P, Murray A, Brace D, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41:642–649. doi: 10.1007/s00134-015-3687-3.
    1. Rodriguez P, Lellouche F, Aboab J, Buisson CB, Brochard L. Transcutaneous arterial carbon dioxide pressure monitoring in critically ill adult patients. Intensive Care Med. 2006;32:309–312. doi: 10.1007/s00134-005-0006-4.
    1. Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192:1080–1088. doi: 10.1164/rccm.201503-0620OC.
    1. Orde SR, Boon AJ, Firth DG, Villarraga HR, Sekiguchi H. Diaphragm assessment by two dimensional speckle tracking imaging in normal subjects. BMC Anesthesiol. 2016;16:43. doi: 10.1186/s12871-016-0201-6.
    1. Delorme M, Bouchard P-A, Simon M, Simard S, Lellouche F. Effects of high-flow nasal cannula on the work of breathing in patients recovering from acute respiratory failure. Crit Care Med. 2017;45:1981–1988. doi: 10.1097/CCM.0000000000002693.
    1. Dassios TG, Doudounakis S, Dimitriou G. Maximum rate of pressure development and maximal relaxation rate of respiratory muscles in patients with cystic fibrosis. Respir Care. 2013;58:474–481. doi: 10.4187/respcare.01930.
    1. Holland AE, Wilson JW, Kotsimbos TC, Naughton MT. Metabolic alkalosis contributes to acute hypercapnic respiratory failure in adult cystic fibrosis. Chest. 2003;124:490–493. doi: 10.1378/chest.124.2.490.
    1. Al-Ghimlas F, Faughnan ME, Tullis E. Metabolic alkalosis in adults with stable cystic fibrosis. Open Respir Med J. 2012;6:59–62. doi: 10.2174/1874306401206010059.
    1. Mauri T, Turrini C, Eronia N, Grasselli G, Volta CA, Bellani G, et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195:1207–1215. doi: 10.1164/rccm.201605-0916OC.
    1. Mündel T, Feng S, Tatkov S, Schneider H. Mechanisms of nasal high flow on ventilation during wakefulness and sleep. J Appl Physiol. 2013;114:1058–1065. doi: 10.1152/japplphysiol.01308.2012.
    1. Blanch L, Bernabé F, Lucangelo U. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir Care. 2005;50:110–124.
    1. Diehl J-L, Piquilloud L, Richard J-CM, Mancebo J, Mercat A. Effects of extracorporeal carbon dioxide removal on work of breathing in patients with chronic obstructive pulmonary disease. Intensive Care Med. 2016;42:951–952. doi: 10.1007/s00134-015-4166-6.
    1. Lenglet H, Sztrymf B, Leroy C, Brun P, Dreyfuss D, Ricard J-D. Humidified high flow nasal oxygen during respiratory failure in the emergency department: feasibility and efficacy. Respir Care. 2012;57:1873–1878. doi: 10.4187/respcare.01575.
    1. Fauroux B, Nicot F, Essouri S, Hart N, Clément A, Polkey MI, et al. Setting of noninvasive pressure support in young patients with cystic fibrosis. Eur Respir J. 2004;24:624–630. doi: 10.1183/09031936.04.0000137603.
    1. Dwyer TJ, Robbins L, Kelly P, Piper AJ, Bell SC, Bye PTP. Non-invasive ventilation used as an adjunct to airway clearance treatments improves lung function during an acute exacerbation of cystic fibrosis: a randomised trial. J Physiother. 2015;61:142–147. doi: 10.1016/j.jphys.2015.05.019.
    1. Fraticelli AT, Lellouche F, L’her E, Taillé S, Mancebo J, Brochard L. Physiological effects of different interfaces during noninvasive ventilation for acute respiratory failure. Crit Care Med. 2009;37:939–945. doi: 10.1097/CCM.0b013e31819b575f.
    1. Mauri T, Alban L, Turrini C, Cambiaghi B, Carlesso E, Taccone P, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med. 2017;43:1453–1463. doi: 10.1007/s00134-017-4890-1.

Source: PubMed

3
Abonnieren