An exploratory randomised double-blind and placebo-controlled phase 2 study of a combination of baclofen, naltrexone and sorbitol (PXT3003) in patients with Charcot-Marie-Tooth disease type 1A

Shahram Attarian, Jean-Michel Vallat, Laurent Magy, Benoît Funalot, Pierre-Marie Gonnaud, Arnaud Lacour, Yann Péréon, Odile Dubourg, Jean Pouget, Joëlle Micallef, Jérôme Franques, Marie-Noëlle Lefebvre, Karima Ghorab, Mahmoud Al-Moussawi, Vincent Tiffreau, Marguerite Preudhomme, Armelle Magot, Laurène Leclair-Visonneau, Tanya Stojkovic, Laura Bossi, Philippe Lehert, Walter Gilbert, Viviane Bertrand, Jonas Mandel, Aude Milet, Rodolphe Hajj, Lamia Boudiaf, Catherine Scart-Grès, Serguei Nabirotchkin, Mickael Guedj, Ilya Chumakov, Daniel Cohen, Shahram Attarian, Jean-Michel Vallat, Laurent Magy, Benoît Funalot, Pierre-Marie Gonnaud, Arnaud Lacour, Yann Péréon, Odile Dubourg, Jean Pouget, Joëlle Micallef, Jérôme Franques, Marie-Noëlle Lefebvre, Karima Ghorab, Mahmoud Al-Moussawi, Vincent Tiffreau, Marguerite Preudhomme, Armelle Magot, Laurène Leclair-Visonneau, Tanya Stojkovic, Laura Bossi, Philippe Lehert, Walter Gilbert, Viviane Bertrand, Jonas Mandel, Aude Milet, Rodolphe Hajj, Lamia Boudiaf, Catherine Scart-Grès, Serguei Nabirotchkin, Mickael Guedj, Ilya Chumakov, Daniel Cohen

Abstract

Background: Charcot-Marie-Tooth type 1A disease (CMT1A) is a rare orphan inherited neuropathy caused by an autosomal dominant duplication of a gene encoding for the structural myelin protein PMP22, which induces abnormal Schwann cell differentiation and dysmyelination, eventually leading to axonal suffering then loss and muscle wasting. We favour the idea that diseases can be more efficiently treated when targeting multiple disease-relevant pathways. In CMT1A patients, we therefore tested the potential of PXT3003, a low-dose combination of three already approved compounds (baclofen, naltrexone and sorbitol). Our study conceptually builds on preclinical experiments highlighting a pleiotropic mechanism of action that includes downregulation of PMP22. The primary objective was to assess safety and tolerability of PXT3003. The secondary objective aimed at an exploratory analysis of efficacy of PXT3003 in CMT1A, to be used for designing next clinical development stages (Phase 2b/3).

Methods: 80 adult patients with mild-to-moderate CMT1A received in double-blind for 1 year Placebo or one of the three increasing doses of PXT3003 tested, in four equal groups. Safety and tolerability were assessed with the incidence of related adverse events. Efficacy was assessed using the Charcot-Marie-Tooth Neuropathy Score (CMTNS) and the Overall Neuropathy Limitations Scale (ONLS) as main endpoints, as well as various clinical and electrophysiological outcomes.

Results: This trial confirmed the safety and tolerability of PXT3003. The highest dose (HD) showed consistent evidence of improvement beyond stabilization. CMTNS and ONLS, with a significant improvement of respectively of 8% (0.4% - 16.2%) and 12.1% (2% - 23.2%) in the HD group versus the pool of all other groups, appear to be the most sensitive clinical endpoints to treatment despite their quasi-stability over one year under Placebo. Patients who did not deteriorate over one year were significantly more frequent in the HD group.

Conclusions: These results confirm that PXT3003 deserves further investigation in adults and could greatly benefit CMT1A-diagnosed children, usually less affected than adults.

Trial registration: EudraCT Number: 2010-023097-40. ClinicalTrials.gov Identifier: NCT01401257. The Committee for Orphan Medicinal Products issued in February 2014 a positive opinion on the application for orphan designation for PXT3003 (EMA/OD/193/13).

Figures

Figure 1
Figure 1
Diagram of the study design. The number of CMT1A patients randomised to each group and reasons for withdrawal are indicated.
Figure 2
Figure 2
Summary of the efficacy analysis, active doses versus Placebo. Least squares mean percentages of relative improvement after 12 months along with 90% CI in all efficacy outcomes after 12 months for LD, ID and HD groups versus Placebo (obtained from Table 3). These estimates and CI were assessed by the ANCOVA efficacy analysis and sorted from highest to lowest value. A negative value of improvement means that the outcome was deteriorated after 12 months. Sample sizes: Placebo (n = 19), LD (n = 21), ID (n = 21), HD (n = 19). The two main efficacy outcomes, CMTNS and ONLS, are indicated with red bold characters. *P < 0.05.
Figure 3
Figure 3
Summary of the efficacy analysis, HD versus PLI. Least squares mean percentages of relative improvement after 12 months with 90% CI in all efficacy outcomes after 12 months for HD versus PLI (obtained from Table 4), assessed by the ANCOVA efficacy analysis and sorted from highest to lowest value. Sample sizes: PLI (n = 61), HD (n = 19). The two main efficacy outcomes, CMTNS and ONLS, are indicated with red bold characters. *P < 0.05.
Figure 4
Figure 4
Response to PXT3003 on clinical scales (Full Analysis Set,n= 80). Mean % (s.e.m.) of improvement from baseline per group at 12 months for CMTNS (a) and ONLS (b). Sample sizes: Placebo (n = 19), LD (n = 21), ID (n = 21), HD (n = 19).
Figure 5
Figure 5
Pooled analysis. Mean change from baseline after 12 months (s.e.m.) of (a) CMTNS and (b) ONLS for single studies and pooled Placebo and ascorbic acid (AA) groups obtained from our study in addition to the French (Micallef et al. [16]) and Italian/UK (Pareyson et al. [17]) Phase 2 trials. For ONLS in Pareyson, values at 24 months were used, as values at 12 months were not available. Estimates of change at 12 months in previous trials were extracted from publications. *P < 0.05, t-test.

References

    1. Kochański A. Molecular genetics studies in polish Charcot-Marie-Tooth families. Folia Neuropathol. 2005;42:65–73.
    1. Patzkó A, Shy ME. Update on Charcot-Marie-Tooth disease. Curr Neurol Neurosci Rep. 2011;11:78–88. doi: 10.1007/s11910-010-0158-7.
    1. Pareyson D, Scaioli V, Laurà M. Clinical and electrophysiological aspects of Charcot-Marie-Tooth disease. Neuromolecular Med. 2006;8:3–22. doi: 10.1385/NMM:8:1-2:3.
    1. Bird TD. ᅟ. 2014. Charcot-Marie-Tooth Neuropathy Type 1.
    1. Gess B, Schirmacher A, Boentert M, Young P. Charcot-Marie-Tooth disease: frequency of genetic subtypes in a German neuromuscular center population. Neuromuscul Disord. 2013;23:647–51. doi: 10.1016/j.nmd.2013.05.005.
    1. Foley C, Schofield I, Eglon G, Bailey G, Chinnery PF, Horvath R. Charcot-Marie-Tooth disease in Northern England. J Neurol Neurosurg Psychiatry. 2012;83:572–3. doi: 10.1136/jnnp-2011-300285.
    1. Raeymaekers P, Timmerman V, Nelis E, De Jonghe P, Hoogendijk JE, Baas F, Barker DF, Martin JJ, De Visser M, Bolhuis PA. Duplication in chromosome 17p11.2 in Charcot-Marie-Tooth neuropathy type 1a (CMT 1a): the HMSN Collaborative Research Group. Neuromuscul Disord. 1991;1:93–97. doi: 10.1016/0960-8966(91)90055-W.
    1. Lupski JR, Wise CA, Kuwano A, Pentao L. Gene dosage is a mechanism for Charcot-Marie-Tooth disease type 1A. Nat Genet. 1992;1:29–33. doi: 10.1038/ng0492-29.
    1. Passage E, Norreel JC, Noack-Fraissignes P, Sanguedolce V, Pizant J, Thirion X, Robaglia-Schlupp A, Pellissier JF, Fontés M. Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat Med. 2004;10:396–401. doi: 10.1038/nm1023.
    1. Kaya F, Belin S, Bourgeois P, Micaleff J, Blin O, Fontés M. Ascorbic acid inhibits PMP22 expression by reducing cAMP levels. Neuromuscul Disord. 2007;17:248–253. doi: 10.1016/j.nmd.2006.12.008.
    1. Schenone A, Nobbio L, Monti Bragadin M, Ursino G, Grandis M. Inherited neuropathies. Curr Treat Options Neurol. 2011;13:160–79. doi: 10.1007/s11940-011-0115-z.
    1. Gess B, Röhr D, Fledrich R, Sereda MW, Kleffner I, Humberg A, Nowitzki J, Strecker J-K, Halfter H, Young P. Sodium-dependent vitamin C transporter 2 deficiency causes hypomyelination and extracellular matrix defects in the peripheral nervous system. J Neurosci. 2011;31:17180–92. doi: 10.1523/JNEUROSCI.3457-11.2011.
    1. Verhamme C, de Haan R, Vermeulen M, Baas F, de Visser M, van Schaik I. Oral high dose ascorbic acid treatment for one year in young CMT1A patients: a randomised, double-blind, placebo-controlled phase II trial. BMC Med. 2009;7:70. doi: 10.1186/1741-7015-7-70.
    1. Burns J, Ouvrier R, Yiu E, Joseph P, Kornberg A, Fahey M, Ryan M. Ascorbic acid for Charcot-Marie-Tooth disease type 1A in children: a randomised, double-blind, placebo-controlled, safety and efficacy trial. Lancet Neurol. 2009;8:537–544. doi: 10.1016/S1474-4422(09)70108-5.
    1. Toth C. Poor tolerability of high dose ascorbic acid in a population of genetically confirmed adult Charcot-Marie-Tooth 1A patients. Acta Neurol Scand. 2009;120:134–138. doi: 10.1111/j.1600-0404.2008.01134.x.
    1. Micallef J, Attarian S, Dubourg O, Gonnaud P-M, Hogrel J-Y, Stojkovic T, Bernard R, Jouve E, Pitel S, Vacherot F, Remec J-F, Jomir L, Azabou E, Al-Moussawi M, Lefebvre M-N, Attolini L, Yaici S, Tanesse D, Fontes M, Pouget J, Blin O. Effect of ascorbic acid in patients with Charcot-Marie-Tooth disease type 1A: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2009;8:1103–1110. doi: 10.1016/S1474-4422(09)70260-1.
    1. Pareyson D, Reilly MM, Schenone A, Fabrizi GM, Cavallaro T, Santoro L, Vita G, Quattrone A, Padua L, Gemignani F, Visioli F, Laurà M, Radice D, Calabrese D, Hughes RAC, Solari A. Ascorbic acid in Charcot-Marie-Tooth disease type 1A (CMT-TRIAAL and CMT-TRAUK): a double-blind randomised trial. Lancet Neurol. 2011;10:320–328. doi: 10.1016/S1474-4422(11)70025-4.
    1. Lewis RA, McDermott MP, Herrmann DN, Hoke A, Clawson LL, Siskind C, Feely SME, Miller LJ, Barohn RJ, Smith P, Luebbe E, Wu X, Shy ME. High-dosage ascorbic acid treatment in Charcot-Marie-Tooth disease type 1A: results of a randomized, double-masked, controlled trial. JAMA Neurol. 2013;70:981–987. doi: 10.1001/jamaneurol.2013.3178.
    1. Ainsworth C. Networking for new drugs. Nat Med. 2011;17:1166–1168. doi: 10.1038/nm1011-1166.
    1. Sereda M, Griffiths I, Pühlhofer A, Stewart H, Rossner MJ, Zimmerman F, Magyar JP, Schneider A, Hund E, Meinck HM, Suter U, Nave KA. A transgenic rat model of Charcot-Marie-Tooth disease. Neuron. 1996;16:1049–1060. doi: 10.1016/S0896-6273(00)80128-2.
    1. Magnaghi V, Ballabio M, Consoli A, Lambert JJ, Roglio I, Melcangi RC. GABA receptor-mediated effects in the peripheral nervous system. J Mol Neurosci. 2006;28:89–102. doi: 10.1385/JMN:28:1:89.
    1. Stein C, Lang LJ. Peripheral mechanisms of opioid analgesia. Curr Opin Pharmacol. 2009;9:3–8. doi: 10.1016/j.coph.2008.12.009.
    1. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51. doi: 10.1038/nbt.2786.
    1. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–661. doi: 10.1096/fj.07-9574LSF.
    1. Shy ME, Blake J, Krajewski K, Fuerst DR, Laura M, Hahn AF, Li J, Lewis RA, Reilly M. Reliability and validity of the CMT neuropathy score as a measure of disability. Neurology. 2005;64:1209–1214. doi: 10.1212/01.WNL.0000156517.00615.A3.
    1. Reilly MM, de Jonghe P, Pareyson D. 136th ENMC International Workshop: Charcot-Marie-Tooth disease type 1A (CMT1A)8-10 April 2005, Naarden, The Netherlands. Neuromuscul Disord. 2005;2006(16):396–402.
    1. Reilly MM, Shy ME, Muntoni F, Pareyson D. 168th ENMC International Workshop: outcome measures and clinical trials in Charcot-Marie-Tooth disease (CMT) Neuromuscul Disord. 2010;20:839–846. doi: 10.1016/j.nmd.2010.08.001.
    1. Komyathy K, Neal S, Feely S, Miller LJ, Lewis RA, Trigge G, Siskind CE, Shy ME, Ramchandren S. Anterior tibialis CMAP amplitude correlations with impairment in CMT1A. Muscle Nerve. 2013;47:493–496. doi: 10.1002/mus.23614.
    1. Murphy SM, Herrmann DN, McDermott MP, Scherer SS, Shy ME, Reilly MM, Pareyson D. Reliability of the CMT neuropathy score (second version) in Charcot-Marie-Tooth disease. J Peripher Nerv Syst. 2011;16:191–198. doi: 10.1111/j.1529-8027.2011.00350.x.
    1. Graham RC, Hughes RAC. A modified peripheral neuropathy scale: the overall neuropathy limitations scale. J Neurol Neurosurg Psychiatry. 2006;77:973–976. doi: 10.1136/jnnp.2005.081547.
    1. Solari A, Laurà M, Salsano E, Radice D, Pareyson D. Reliability of clinical outcome measures in Charcot-Marie-Tooth disease. Neuromuscul Disord. 2008;18:19–26. doi: 10.1016/j.nmd.2007.09.006.
    1. Guyatt GH, Sullivan MJ, Thompson PJ, Fallen EL, Pugsley SO, Taylor DW, Berman LB. The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure. Can Med Assoc J. 1985;132:919–923.
    1. Hogrel J-Y, Payan CA, Ollivier G, Tanant V, Attarian S, Couillandre A, Dupeyron A, Lacomblez L, Doppler V, Meininger V, Tranchant C, Pouget J, Desnuelle C. Development of a French isometric strength normative database for adults using quantitative muscle testing. Arch Phys Med Rehabil. 2007;88:1289–1297. doi: 10.1016/j.apmr.2007.07.011.
    1. Senn S. Testing for baseline balance in clinical trials. Stat Med. 1994;13:1715–1726. doi: 10.1002/sim.4780131703.
    1. O’Brien P. Procedures for comparing samples with multiple endpoints. Biometrics. 1984;40:1079–1087. doi: 10.2307/2531158.
    1. Logan BR, Tamhane AC. On O’ Brien’ s OLS and GLS tests for multiple endpoints. Lect Notes-Monograph Ser. 2006;47:76–88.
    1. Ruberg SJ. Contrasts for identifying the minimum effective dose. J Am Stat Assoc. 1989;84:816–822. doi: 10.1080/01621459.1989.10478843.
    1. Tamhane AC, Hochberg Y, Dunnett CW. Multiple test procedures for dose finding. Biometrics. 1996;52:21–37. doi: 10.2307/2533141.
    1. Peace KE. One-sided or two-sided p values: which most appropriately address the question of drug efficacy? J Biopharm Stat. 1991;1:133–138. doi: 10.1080/10543409108835010.
    1. Fisher LD. The use of one-sided tests in drug trials: an FDA advisory committee member’s perspective. J Biopharm Stat. 1991;1:151–156. doi: 10.1080/10543409108835012.
    1. Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280:1690–1691. doi: 10.1001/jama.280.19.1690.
    1. Chakraborty H, Gu H. A Mixed Model Approach for Intent-to-Treat Analysis in Longitudinal Clinical Trials with Missing Values. Research Triangle Park, NC: RTI International; 2009.
    1. Shy ME, Rose MR. Charcot-Marie-Tooth disease impairs quality of life: why? And how do we improve it? Neurology. 2005;65(6):790–791. doi: 10.1212/01.wnl.0000181027.21574.df.
    1. Padua L, Aprile I, Cavallaro T, Commodari I, Pareyson D, Quattrone A, Rizzuto N, Vita G, Tonali P, Schenone A. Relationship between clinical examination, quality of life, disability and depression in CMT patients: Italian multicenter study. Neurol Sci. 2008;29:157–162. doi: 10.1007/s10072-008-0928-z.
    1. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò MR. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14:365–376. doi: 10.1038/nrn3475.
    1. Shy ME, Chen L, Swan ER, Taube R, Krajewski KM, Herrmann D, Lewis RA, McDermott MP. Neuropathy progression in Charcot-Marie-Tooth disease type 1A. Neurology. 2008;70:378–83. doi: 10.1212/01.wnl.0000297553.36441.ce.
    1. Dyck PJ, Karnes JL, Lambert EH. Longitudinal study of neuropathic deficits and nerve conduction abnormalities in hereditary motor and sensory neuropathy type 1. Neurology. 1989;39:1302–1302. doi: 10.1212/WNL.39.10.1302.
    1. Verhamme C, van Schaik IN, Koelman JHTM, de Haan RJ, Vermeulen M, de Visser M. Clinical disease severity and axonal dysfunction in hereditary motor and sensory neuropathy Ia. J Neurol. 2004;251:1491–7. doi: 10.1007/s00415-004-0578-x.
    1. Verhamme C, van Schaik IN, Koelman JHTM, de Haan RJ, de Visser M. The natural history of Charcot-Marie-Tooth type 1A in adults: a 5-year follow-up study. Brain. 2009;132(Pt 12):3252–62. doi: 10.1093/brain/awp251.
    1. Thomas PK, Marques W, Davis MB, Sweeney MG, King RHM, Bradley JL, Muddle JR, Tyson J, Malcolm S, Harding AE, Street RH. The phenotypic manifestations of chromosome 17p11.2 duplication. Brain. 1997;120(3):465–478. doi: 10.1093/brain/120.3.465.

Source: PubMed

3
Abonnieren