Potential Role of Oral Rinses Targeting the Viral Lipid Envelope in SARS-CoV-2 Infection

Valerie B O'Donnell, David Thomas, Richard Stanton, Jean-Yves Maillard, Robert C Murphy, Simon A Jones, Ian Humphreys, Michael J O Wakelam, Christopher Fegan, Matt P Wise, Albert Bosch, Syed A Sattar, Valerie B O'Donnell, David Thomas, Richard Stanton, Jean-Yves Maillard, Robert C Murphy, Simon A Jones, Ian Humphreys, Michael J O Wakelam, Christopher Fegan, Matt P Wise, Albert Bosch, Syed A Sattar

Abstract

Emerging studies increasingly demonstrate the importance of the throat and salivary glands as sites of virus replication and transmission in early COVID-19 disease. SARS-CoV-2 is an enveloped virus, characterized by an outer lipid membrane derived from the host cell from which it buds. While it is highly sensitive to agents that disrupt lipid biomembranes, there has been no discussion about the potential role of oral rinsing in preventing transmission. Here, we review known mechanisms of viral lipid membrane disruption by widely available dental mouthwash components that include ethanol, chlorhexidine, cetylpyridinium chloride, hydrogen peroxide, and povidone-iodine. We also assess existing formulations for their potential ability to disrupt the SARS-CoV-2 lipid envelope, based on their concentrations of these agents, and conclude that several deserve clinical evaluation. We highlight that already published research on other enveloped viruses, including coronaviruses, directly supports the idea that oral rinsing should be considered as a potential way to reduce transmission of SARS-CoV-2. Research to test this could include evaluating existing or specifically tailored new formulations in well-designed viral inactivation assays, then in clinical trials. Population-based interventions could be undertaken with available mouthwashes, with active monitoring of outcome to determine efficacy. This is an under-researched area of major clinical need.

Keywords: coronavirus; envelope; lipid; oropharynx; respiratory; virus.

© The Author(s) 2020. Published by Oxford University Press on behalf of the American Physiological Society.

Figures

Figure 1.
Figure 1.
Cartoon Representation of the SARS-CoV-2 Glycoprotein, Embedded in the Viral Envelope, along with Membrane Disrupting Agents. Ribbon diagram was obtained from Wrapp et al., chemical structures were from PubChem (https://pubchem.ncbi.nlm.nih.gov/) and Nieto-Garai et al.

References

    1. Wrapp D, Wang N, Corbett KS, et al.. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367(6483):1260–126.
    1. Nieto-Garai JA, Glass B, Bunn C, et al.. Lipidomimetic compounds act as HIV-1 entry inhibitors by altering viral membrane structure. Front Immunol 2018;9:1983.
    1. Gerl MJ, Sampaio JL, Urban S, et al.. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J Cell Biol 2012;196(2):213–221.
    1. Garoff H, Simons K, Dobberstein B.. Assembly of the Semliki Forest virus membrane glycoproteins in the membrane of the endoplasmic reticulum in vitro. J Mol Biol 1978;124(4):587–600.
    1. Kalvodova L, Sampaio JL, Cordo S, Ejsing CS, Shevchenko A, Simons K.. The lipidomes of vesicular stomatitis virus, Semliki Forest virus, and the host plasma membrane analyzed by quantitative shotgun mass spectrometry. J Virol 2009;83(16):7996–8003.
    1. Cluett EB, Machamer CE.. The envelope of vaccinia virus reveals an unusual phospholipid in Golgi complex membranes. J Cell Sci 1996;109(Pt 8):2121–21.
    1. Fleischer B, Zambrano F, Fleischer S.. Biochemical characterization of the Golgi complex of mammalian cells. J Supramol Struct 1974;2(5–6):737–750.
    1. Hornick CA, Hamilton RL, Spaziani E, Enders GH, Havel RJ.. Isolation and characterization of multivesicular bodies from rat hepatocytes: an organelle distinct from secretory vesicles of the Golgi apparatus. J Cell Biol 1985;100(5):1558–15.
    1. Howell KE, Palade GE.. Hepatic Golgi fractions resolved into membrane and content subfractions. J Cell Biol 1982;92(3):822–832.
    1. Keenan TW, Morre DJ.. Phospholipid class and fatty acid composition of Golgi apparatus isolated from rat liver and comparison with other cell fractions. Biochemistry 1970;9(1):19–25.
    1. Moreau P, Cassagne C.. Phospholipid trafficking and membrane biogenesis. Biochim Biophys Acta 1994;1197(3):257–290.
    1. Kean LS, Grant AM, Angeletti C, et al.. Plasma membrane translocation of fluorescent-labeled phosphatidylethanolamine is controlled by transcription regulators, PDR1 and PDR3. J Cell Biol 1997;138(2):255–270.
    1. Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G.. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol 1994;124(1–2):55–70.
    1. Tooze J, Tooze SA.. Infection of AtT20 murine pituitary tumour cells by mouse hepatitis virus strain A59: virus budding is restricted to the Golgi region. Eur J Cell Biol 1985;37:203–212.
    1. Yan B, Chu H, Yang D, et al.. Characterization of the lipidomic profile of human coronavirus-infected cells: implications for lipid metabolism remodeling upon coronavirus replication. Viruses 2019;11(1):73.
    1. Kapadia SB, Chisari FV.. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci USA 2005;102(7):2561–2566.
    1. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD.. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2006;2(12):e132.
    1. Pratelli A, Colao V.. Role of the lipid rafts in the life cycle of canine coronavirus. J Gen Virol 2015;96(Pt 2):331–337.
    1. Kampf G, Todt D, Pfaender S, Steinmann E.. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 2020;104(3):246–251.
    1. Hulkower RL, Casanova LM, Rutala WA, Weber DJ, Sobsey MD.. Inactivation of surrogate coronaviruses on hard surfaces by health care germicides. Am J Infect Control 2011;39(5):401–407.
    1. Sattar SA, Springthorpe VS, Karim Y, Loro P.. Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses. Epidemiol Infect 1989;102(3):493–505.
    1. Kratzel A, Todt D, V’kovski, et al.. Efficient inactivation of SARS-CoV-2 by WHO-recommended hand rub formulations and alcohols. BioRxiv. 2020. doi: 10.1101/2020.03.10.986711.
    1. Brown TT Jr. Laboratory evaluation of selected disinfectants as virucidal agents against porcine parvovirus, pseudorabies virus, and transmissible gastroenteritis virus. Am J Vet Res 1981;42(6):1033–1036.
    1. Saknimit M, Inatsuki I, Sugiyama Y, Yagami K.. Virucidal efficacy of physico-chemical treatments against coronaviruses and parvoviruses of laboratory animals. Jikken Dobutsu 1988;37(3):341–345.
    1. Swanson DA. A state-based regression model for estimating substate life expectancy. Demography 1989;26(1):161–170.
    1. Wood A, Payne D.. The action of three antiseptics/disinfectants against enveloped and non-enveloped viruses. J Hosp Infect 1998;38(4):283–295.
    1. Wölfel R, Corman VM, Guggemos W, et al.. Virological assessment of hospitalized patients with COVID-2019. Nature 2020. doi: 10.1038/s41586-020-2196-x.
    1. Pan Y, Zhang D, Yang P, Poon LLM, Wang Q.. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis 2020. doi: 10.1016/S1473-3099(20)30113-4.
    1. To KK, Tsang OT, Leung WS, et al.. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 2020.
    1. Liu Y, Yan LM, Wan L, et al.. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis 2020. doi: 10.1016/S1473-3099(20)30196-1.
    1. Liu Y, Yang Y, Zhang C, et al.. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 2020;63(3):364–374.
    1. Zou L, Ruan F, Huang M, et al.. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 2020;382(12):1177–1179.
    1. Xu J, Li Y, Gan F, Du Y, Yao Y.. Salivary glands: potential reservoirs for COVID-19 asymptomatic infection. J Dent Res 2020:22034520918518. doi: 10.1177/0022034520918518.
    1. Li R, Pei S, Chen B, et al.. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science 2020.
    1. Varia M, Wilson S, Sarwal S, et al.. Investigation of a nosocomial outbreak of severe acute respiratory syndrome (SARS) in Toronto, Canada. CMAJ 2003;169(4):285–292.
    1. van Doremalen N, Bushmaker T, Morris DH, et al.. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020;382:1564–1567.
    1. Tamin A, Queen K, Paden CR, et al.. Isolation and growth characterization of novel full length and deletion mutant human MERS-CoV strains from clinical specimens collected during 2015. J Gen Virol 2019;100(11):1523–1529.
    1. Harcourt J, Tamin A, Lu X, et al.. Severe acute respiratory syndrome coronavirus 2 from patient with 2019 novel coronavirus disease, United States. Emerg Infect Dis 2020;26(6). doi: 10.3201/eid2606.200516
    1. Ly HV, Longo ML.. The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. Biophys J 2004;87(2):1013–1033.
    1. Ahl PL, Chen L, Perkins WR, et al.. Interdigitation-fusion: a new method for producing lipid vesicles of high internal volume. Biochim Biophys Acta 1994;1195(2):237–2.
    1. Hunt GR, Jones IC.. A 1H-NMR investigation of the effects of ethanol and general anaesthetics on ion channels and membrane fusion using unilamellar phospholipid membranes. Biochim Biophys Acta 1983;736(1):1–10.
    1. Komatsu H, Guy PT, Rowe ES.. Effect of unilamellar vesicle size on ethanol-induced interdigitation in dipalmitoylphosphatidylcholine. Chem Phys Lipids 1993;65(1):11–21.
    1. Komatsu H, Okada S.. Effects of ethanol on permeability of phosphatidylcholine/cholesterol mixed liposomal membranes. Chem Phys Lipids 1997;85:67–74.
    1. Komatsu H, Okada S.. Increased permeability of phase-separated liposomal membranes with mixtures of ethanol-induced interdigitated and non-interdigitated structures. Biochim Biophys Acta 1995;1237(2):169–175.
    1. Dennison DK, Meredith GM, Shillitoe EJ, Caffesse RG.. The antiviral spectrum of Listerine antiseptic. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995;79(4):442–448.
    1. Roberts PL, Lloyd D.. Virus inactivation by protein denaturants used in affinity chromatography. Biologicals 2007;35(4):343–347.
    1. Siddharta A, Pfaender S, Vielle NJ, et al.. Virucidal activity of World Health Organization-recommended formulations against enveloped viruses, including zika, ebola, and emerging coronaviruses. J Infect Dis 2017;215(6):902–90.
    1. Oh JY, Yu JM, Ko JH.. Analysis of ethanol effects on corneal epithelium. Invest Ophthalmol Vis Sci 2013;54(6):3852–3856.
    1. Sonmez M, Ince HY, Yalcin O, et al.. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size. PLoS One 2013;8(9):e76579.
    1. Chi LM, Wu WG.. Mechanism of hemolysis of red blood cell mediated by ethanol. Biochim Biophys Acta 1991;1062(1):46–50.
    1. Tyulina OV, Huentelman MJ, Prokopieva VD, Boldyrev AA, Johnson P.. Does ethanol metabolism affect erythrocyte hemolysis? Biochim Biophys Acta 2000;1535(1):69–77.
    1. Tyulina OV, Prokopieva VD, Dodd RD, et al.. In vitro effects of ethanol, acetaldehyde and fatty acid ethyl esters on human erythrocytes. Alcohol Alcohol 2002;37(2):179–186.
    1. Wang Y, Tong J, Chang B, Wang B, Zhang D, Wang B.. Effects of alcohol on intestinal epithelial barrier permeability and expression of tight junction-associated proteins. Mol Med Rep 2014;9(6):2352–2356.
    1. Meiller TF, Silva A, Ferreira SM, Jabra-Rizk MA, Kelley JI, DePaola LG.. Efficacy of Listerine antiseptic in reducing viral contamination of saliva. J Clin Periodontol 2005;32(4):341–346.
    1. Komatsu H, Okada S.. Ethanol-induced aggregation and fusion of small phosphatidylcholine liposome: participation of interdigitated membrane formation in their processes. Biochim Biophys Acta 1995;1235(2):270–280.
    1. Nambi P, Rowe ES, McIntosh TJ.. Studies of the ethanol-induced interdigitated gel phase in phosphatidylcholines using the fluorophore 1,6-diphenyl-1,3,5-hexatriene. Biochemistry 1988;27(26):9175–9182.
    1. Rowe ES. Thermodynamic reversibility of phase transitions. Specific effects of alcohols on phosphatidylcholines. Biochim Biophys Acta 1985;813(2):321–330.
    1. McConnell DS, Schullery SE.. Phospholipidvesiclefusion and drug loading: temperature, solute and cholesterol effects, and, a rapid preparationfor solute-loadedvesicles. Biochimica et Biophysica Acta 1985;818:13–22.
    1. Boni LT, Minchey SR, Perkins WR, et al.. Curvature dependent induction of the interdigitated gel phase in DPPC vesicles. Biochim Biophys Acta 1993;1146(2):247–257.
    1. Barry JA, Gawrisch K.. Effects of ethanol on lipid bilayers containing cholesterol, gangliosides, and sphingomyelin. Biochemistry 1995;34(27):8852–8860.
    1. Trandum C, Westh P, Jorgensen K, Mouritsen OG.. Association of ethanol with lipid membranes containing cholesterol, sphingomyelin and ganglioside: a titration calorimetry study. Biochim Biophys Acta 1999;1420(1–2):179–188.
    1. Salimi H, Johnson J, Flores MG, et al.. The lipid membrane of HIV-1 stabilizes the viral envelope glycoproteins and modulates their sensitivity to antibody neutralization. J Biol Chem 2020;295(2):348–362.
    1. Sands J, Auperin D, Snipes W.. Extreme sensitivity of enveloped viruses, including herpes simplex, to long-chain unsaturated monoglycerides and alcohols. Antimicrob Agents Chemother 1979;15(1):67–73.
    1. Astani A, Reichling J, Schnitzler P.. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytother Res 2010;24(5):673–679.
    1. Cheung HY, Wong MM, Cheung SH, Liang LY, Lam YW, Chiu SK.. Differential actions of chlorhexidine on the cell wall of Bacillus subtilis and Escherichia coli. PLoS One 2012;7(5):e36659.
    1. Bernstein D, Schiff G, Echler G, Prince A, Feller M, Briner W.. In vitro virucidal effectiveness of a 0.12%-chlorhexidine gluconate mouthrinse. J Dent Res 1990;69(3):874–876.
    1. Bonesvoll P, Lokken P, Rolla G, Paus PN.. Retention of chlorhexidine in the human oral cavity after mouth rinses. Arch Oral Biol 1974;19(3):209–212.
    1. Ferretti GA, Raybould TP, Brown AT, et al.. Chlorhexidine prophylaxis for chemotherapy- and radiotherapy-induced stomatitis: a randomized double-blind trial. Oral Surg Oral Med Oral Pathol 1990;69(3):331–338.
    1. Kuo CC, Wang RH, Wang HH, Li CH.. Meta-analysis of randomized controlled trials of the efficacy of propolis mouthwash in cancer therapy-induced oral mucositis. Support Care Cancer 2018;26(12):4001–400.
    1. Sorensen JB, Skovsgaard T, Bork E, Damstrup L, Ingeberg S.. Double-blind, placebo-controlled, randomized study of chlorhexidine prophylaxis for 5-fluorouracil-based chemotherapy-induced oral mucositis with nonblinded randomized comparison to oral cooling (cryotherapy) in gastrointestinal malignancies. Cancer 2008;112(7):1600–1606.
    1. Veitz-Keenan A, Ferraiolo DM.. Oral care with chlorhexidine seems effective for reducing the incidence of ventilator-associated pneumonia. Evid Based Dent 2017;18(4):113–114.
    1. Eggers M, Koburger-Janssen T, Eickmann M, Zorn J.. In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. Infect Dis Ther 2018;7(2):249–259.
    1. Kariwa H, Fujii N, Takashima I.. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology 2006;212(Suppl 1):119–123.
    1. Japan Ministry of Health LaW. Pandemic influenza preparedness action plan of the Japanese Government; 2007.
    1. Nagatake T, Ahmed K, Oishi K.. Prevention of respiratory infections by povidone-iodine gargle. Dermatology 2002;204(Suppl 1):32–36.
    1. Shiraishi T, Nakagawa Y.. Evaluation of the bactericidal activity of povidone-iodine and commercially available gargle preparations. Dermatology 2002;204(Suppl 1):37–41.
    1. Rahimi S, Lazarou G.. Late-onset allergic reaction to povidone-iodine resulting in vulvar edema and urinary retention. Obstet Gynecol 2010;116(Suppl 2):562–564.
    1. Satomura K, Kitamura T, Kawamura T, et al.. Prevention of upper respiratory tract infections by gargling: a randomized trial. Am J Prev Med 2005;29(4):302–307.
    1. Shirai J, Kanno T, Tsuchiya Y, Mitsubayashi S, Seki R.. Effects of chlorine, iodine, and quaternary ammonium compound disinfectants on several exotic disease viruses. J Vet Med Sci 2000;62(1):85–92.
    1. Sakai M, Shimbo T, Omata K, et al.. Cost-effectiveness of gargling for the prevention of upper respiratory tract infections. BMC Health Serv Res 2008;8:258.
    1. Ramalingam S, Graham C, Dove J, Morrice L, Sheikh A.. A pilot, open labelled, randomised controlled trial of hypertonic saline nasal irrigation and gargling for the common cold. Sci Rep 2019;9(1):1015.
    1. Ramalingam S, Cai B, Wong J, et al.. Antiviral innate immune response in non-myeloid cells is augmented by chloride ions via an increase in intracellular hypochlorous acid levels. Sci Rep 2018;8(1):13630.
    1. Omidbakhsh N, Sattar SA.. Broad-spectrum microbicidal activity, toxicologic assessment, and materials compatibility of a new generation of accelerated hydrogen peroxide-based environmental surface disinfectant. Am J Infect Control 2006;34(5):251–25.
    1. Walsh LJ. Safety issues relating to the use of hydrogen peroxide in dentistry. Aust Dent J 2000;45(4):257–269.
    1. Kraus FW, Perry WI, Nickerson JF.. Salivary catalase and peroxidase values in normal subjects and in persons with periodontal disease. Oral Surg Oral Med Oral Pathol 1958;11(1):95–102.
    1. Cai J, Chen Y, Seth S, Furukawa S, Compans RW, Jones DP.. Inhibition of influenza infection by glutathione. Free Radic Biol Med 2003;34(7):928–9.
    1. Staal FJ, Roederer M, Herzenberg LA, Herzenberg LA.. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 1990;87(24):9943–9947.
    1. Xiao J, Deng J, Lv L, et al.. Hydrogen peroxide induce human cytomegalovirus replication through the activation of p38-MAPK signaling pathway. Viruses 2015;7(6):2816–2833.
    1. Popkin DL, Zilka S, Dimaano M, et al.. Cetylpyridinium chloride (CPC) exhibits potent, rapid activity against influenza viruses in vitro and in vivo. Pathog Immun 2017;2(2):252–269.
    1. Kohn WG, Collins AS, Cleveland JL, et al.. Guidelines for infection control in dental health-care settings–2003. MMWR Recomm Rep 2003;52(RR-17):1–61.
    1. Feres M, Figueiredo LC, Faveri M, Stewart B, de Vizio W.. The effectiveness of a preprocedural mouthrinse containing cetylpyridinium chloride in reducing bacteria in the dental office. J Am Dent Assoc 2010;141(4):415–422.
    1. Retamal-Valdes B, Soares GM, Stewart B, et al.. Effectiveness of a pre-procedural mouthwash in reducing bacteria in dental aerosols: randomized clinical trial. Braz Oral Res 2017;31:e21.
    1. Meng L, Hua F, Bian Z.. Coronavirus disease 2019 (COVID-19): emerging and future challenges for dental and oral medicine. J Dent Res 2020;99(5):481–487.
    1. Ather A, Patel B, Ruparel NB, Diogenes A, Hargreaves KM.. Coronavirus disease 19 (COVID-19): implications for clinical dental care. J Endod 2020;46(5):584–595.
    1. Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B.. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci 2020;12(1):9.
    1. Firquet S, Beaujard S, Lobert PE, et al.. Survival of enveloped and non-enveloped viruses on inanimate surfaces. Microbes Environ 2015;30(2):140–14.
    1. Jung MK, Callaci JJ, Lauing KL, et al.. Alcohol exposure and mechanisms of tissue injury and repair. Alcohol Clin Exp Res 2011;35(3):392–399.
    1. Simons K, Garoff H.. The budding mechanisms of enveloped animal viruses. J Gen Virol 1980;50(1):1–21.
    1. Sanchez EL, Lagunoff M.. Viral activation of cellular metabolism. Virology 2015;479–480:609–6.
    1. Wolff MH, Sattar SA, Adegbunrin O, Tetro J.. Environmental survival and microbicide inactivation of coronaviruses. In: Schmidt A, Weber O, Wolff MH, eds. Coronaviruses with Special Emphasis on First Insights Concerning SARS. Basel: Birkhäuser Basel; 2005:201–212.
    1. Peiris JS, Yuen KY, Osterhaus AD, Stohr K.. The severe acute respiratory syndrome. N Engl J Med 2003;349(25):2431–2441.
    1. Slater JL, Huang CH.. Structure of biological membranes. In: Yeagle P, ed. Structure of Biological Membranes. Boca Raton, FL: CRC Press; 1992.
    1. Slater JL, Huang CH.. Interdigitated bilayer membranes. Prog Lipid Res 1988;27(4):325–359.
    1. Eggers M. Infectious disease management and control with povidone iodine. Infect Dis Ther 2019;8(4):581–593.
    1. van Meer G. Lipids of the Golgi membrane. Trends Cell Biol 1998;8(1):29–33.

Source: PubMed

3
Abonnieren