Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes

M Hey-Mogensen, K Højlund, B F Vind, L Wang, F Dela, H Beck-Nielsen, M Fernström, K Sahlin, M Hey-Mogensen, K Højlund, B F Vind, L Wang, F Dela, H Beck-Nielsen, M Fernström, K Sahlin

Abstract

Aim/hypothesis: Studies have suggested a link between insulin resistance and mitochondrial dysfunction in skeletal muscles. Our primary aim was to investigate the effect of aerobic training on mitochondrial respiration and mitochondrial reactive oxygen species (ROS) release in skeletal muscle of obese participants with and without type 2 diabetes.

Methods: Type 2 diabetic men (n = 13) and control (n = 14) participants matched for age, BMI and physical activity completed 10 weeks of aerobic training. Pre- and post-training muscle biopsies were obtained before a euglycaemic-hyperinsulinaemic clamp and used for measurement of respiratory function and ROS release in isolated mitochondria.

Results: Training significantly increased insulin sensitivity, maximal oxygen consumption and muscle mitochondrial respiration with no difference between groups. When expressed in relation to a marker of mitochondrial density (intrinsic mitochondrial respiration), training resulted in increased mitochondrial ADP-stimulated respiration (with NADH-generating substrates) and decreased respiration without ADP. Intrinsic mitochondrial respiration was not different between groups despite lower insulin sensitivity in type 2 diabetic participants. Mitochondrial ROS release tended to be higher in participants with type 2 diabetes.

Conclusions/interpretation: Aerobic training improves muscle respiration and intrinsic mitochondrial respiration in untrained obese participants with and without type 2 diabetes. These adaptations demonstrate an increased metabolic fitness, but do not seem to be directly related to training-induced changes in insulin sensitivity.

References

    1. Arch Biochem Biophys. 1999 Dec 15;372(2):315-20
    1. Diabetes Obes Metab. 2009 Sep;11(9):874-83
    1. Diabetes. 2002 Oct;51(10):2944-50
    1. Diabetologia. 2009 Jul;52(7):1400-8
    1. J Clin Endocrinol Metab. 2009 Apr;94(4):1372-8
    1. J Clin Endocrinol Metab. 2008 Oct;93(10):3885-92
    1. Diabetologia. 2007 Apr;50(4):790-6
    1. N Engl J Med. 2004 Feb 12;350(7):664-71
    1. J Physiol. 2003 Oct 15;552(Pt 2):335-44
    1. Diabetes. 2006 Dec;55(12):3309-19
    1. Diabetes. 2007 Jun;56(6):1592-9
    1. Diabetes. 2001 Feb;50(2):404-10
    1. Diabetes. 1995 Sep;44(9):1010-20
    1. Biochem J. 1976 Mar 15;154(3):689-700
    1. Diabetes Metab Res Rev. 2006 Nov-Dec;22(6):492-8
    1. Diabetes. 2000 May;49(5):677-83
    1. Diabetes. 2007 Aug;56(8):2142-7
    1. Diabetes. 2008 Nov;57(11):2943-9
    1. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8665-70
    1. Endocr Rev. 2002 Oct;23(5):599-622
    1. Acta Physiol Scand. 2002 Nov;176(3):185-94
    1. N Engl J Med. 1989 Aug 10;321(6):337-43
    1. Diabetes. 2010 Mar;59(3):572-9
    1. Med Sci Sports Exerc. 2004 Jul;36(7):1196-201
    1. Pflugers Arch. 2003 May;446(2):261-9
    1. Diabetes. 2006 Aug;55(8):2277-85
    1. Am J Physiol Endocrinol Metab. 2008 Mar;294(3):E607-14
    1. Diabetes. 2005 Jan;54(1):8-14
    1. Cell Metab. 2009 Oct;10(4):260-72
    1. Diabetologia. 2009 Apr;52(4):574-82
    1. Eur J Endocrinol. 2008 May;158(5):643-53
    1. Acta Physiol Scand. 1997 Nov;161(3):345-53
    1. Diabetologia. 2007 Jan;50(1):113-20
    1. J Physiol. 2006 Mar 15;571(Pt 3):669-81
    1. PLoS Med. 2007 May;4(5):e154
    1. J Clin Invest. 2009 Mar;119(3):573-81
    1. Diabetes. 2008 May;57(5):1166-75

Source: PubMed

3
Abonnieren