Efficacy and Safety of High-Dose Ivermectin for Reducing Malaria Transmission (IVERMAL): Protocol for a Double-Blind, Randomized, Placebo-Controlled, Dose-Finding Trial in Western Kenya

Menno R Smit, Eric Ochomo, Ghaith Aljayyoussi, Titus Kwambai, Bernard Abong'o, Nabie Bayoh, John Gimnig, Aaron Samuels, Meghna Desai, Penelope A Phillips-Howard, Simon Kariuki, Duolao Wang, Steve Ward, Feiko O Ter Kuile, Menno R Smit, Eric Ochomo, Ghaith Aljayyoussi, Titus Kwambai, Bernard Abong'o, Nabie Bayoh, John Gimnig, Aaron Samuels, Meghna Desai, Penelope A Phillips-Howard, Simon Kariuki, Duolao Wang, Steve Ward, Feiko O Ter Kuile

Abstract

Background: Innovative approaches are needed to complement existing tools for malaria elimination. Ivermectin is a broad spectrum antiparasitic endectocide clinically used for onchocerciasis and lymphatic filariasis control at single doses of 150 to 200 mcg/kg. It also shortens the lifespan of mosquitoes that feed on individuals recently treated with ivermectin. However, the effect after a 150 to 200 mcg/kg oral dose is short-lived (6 to 11 days). Modeling suggests higher doses, which prolong the mosquitocidal effects, are needed to make a significant contribution to malaria elimination. Ivermectin has a wide therapeutic index and previous studies have shown doses up to 2000 mcg/kg (ie, 10 times the US Food and Drug Administration approved dose) are well tolerated and safe; the highest dose used for onchocerciasis is a single dose of 800 mcg/kg.

Objective: The aim of this study is to determine the safety, tolerability, and efficacy of ivermectin doses of 0, 300, and 600 mcg/kg/day for 3 days, when provided with a standard 3-day course of the antimalarial dihydroartemisinin-piperaquine (DP), on mosquito survival.

Methods: This is a double-blind, randomized, placebo-controlled, parallel-group, 3-arm, dose-finding trial in adults with uncomplicated malaria. Monte Carlo simulations based on pharmacokinetic modeling were performed to determine the optimum dosing regimens to be tested. Modeling showed that a 3-day regimen of 600 mcg/kg/day achieved similar median (5 to 95 percentiles) maximum drug concentrations (Cmax) of ivermectin to a single of dose of 800 mcg/kg, while increasing the median time above the lethal concentration 50% (LC50, 16 ng/mL) from 1.9 days (1.0 to 5.7) to 6.8 (3.8 to 13.4) days. The 300 mcg/kg/day dose was chosen at 50% of the higher dose to allow evaluation of the dose response. Mosquito survival will be assessed daily up to 28 days in laboratory-reared Anopheles gambiae s.s. populations fed on patients' blood taken at days 0, 2 (Cmax), 7 (primary outcome), 10, 14, 21, and 28 after the start of treatment. Safety outcomes include QT-prolongation and mydriasis. The trial will be conducted in 6 health facilities in western Kenya and requires a sample size of 141 participants (47 per arm). Sub-studies include (1) rich pharmacokinetics and (2) direct skin versus membrane feeding assays.

Results: Recruitment started July 20, 2015. Data collection was completed July 2, 2016. Unblinding and analysis will commence once the database has been completed, cleaned, and locked.

Conclusions: High-dose ivermectin, if found to be safe and well tolerated, might offer a promising new tool for malaria elimination.

Keywords: Anopheles gambiae s.s.; Kenya; Plasmodium falciparum; clinical trial; dihydroartemisinin-piperaquine; insecticide; ivermectin; malaria; pharmacokinetics; study protocol.

Conflict of interest statement

Conflicts of Interest: None declared.

©Menno R Smit, Eric Ochomo, Ghaith Aljayyoussi, Titus Kwambai, Bernard Abong'o, Nabie Bayoh, John Gimnig, Aaron Samuels, Meghna Desai, Penelope A Phillips-Howard, Simon Kariuki, Duolao Wang, Steve Ward, Feiko O ter Kuile. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 17.11.2016.

Figures

Figure 1
Figure 1
Simulated plasma concentrations of ivermectin 800 mcg/kg single dose. Monte Carlo simulation of 1000 theoretical subjects of ivermectin concentration with 800 mcg/kg single dose (median: solid line, 5th and 95th percentiles: dashed lines). Cmax is 108.1 ng/mL (CI 75.3-164.4). Time above LC50 (16 ng/mL; dotted line) is 1.9 days (CI 1.0-5.7).
Figure 2
Figure 2
Simulated plasma concentrations of ivermectin 600 mcg/kg/day 3-day regimen and 800 mcg/kg/day single dose. Monte Carlo simulation of 1000 theoretical subjects of ivermectin concentrations following 600 mcg/kg/day for 3 days (median: solid line, 5th and 95th percentiles: grey lines), achieving similar Cmax concentrations compared to 800 mcg/kg single dose (median: dash curve, 95th percentile of Cmax: dashed horizontal line). The median time above LC50 (16 ng/mL; dotted horizontal line) increases from 1.9 days with 800 mcg/kg single dose to 6.8 days with 600 mcg/kg/day for 3 days.
Figure 3
Figure 3
Difference between membrane feeding and direct feeding (adapted from Bousema et al 2012 [38]).

References

    1. Chaccour CJ, Kobylinski KC, Bassat Q, Bousema T, Drakeley C, Alonso P, Foy BD. Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination. Malar J. 2013 May 07;12:153. doi: 10.1186/1475-2875-12-153.
    1. González P, González FA, Ueno K. Ivermectin in human medicine, an overview of the current status of its clinical applications. Curr Pharm Biotechnol. 2012 May;13(6):1103–9.
    1. World Health Organization Onchocerciasis fact Sheet. [2016-09-06].
    1. World Health Organization Lymphatic Filariasis fact Sheet. [2016-09-06].
    1. World Health Organization Strongyloidiasis fact Sheet. [2016-09-06].
    1. Mectizan Donation Program 2015 Annual highlights. [2016-09-06]. .
    1. Shmidt E, Levitt J. Dermatologic infestations. Int J Dermatol. 2012 Feb;51(2):131–41. doi: 10.1111/j.1365-4632.2011.05191.x.
    1. Foy BD, Kobylinski KC, da Silva IM, Rasgon JL, Sylla M. Endectocides for malaria control. Trends Parasitol. 2011 Oct;27(10):423–8. doi: 10.1016/j.pt.2011.05.007.
    1. Butters MP, Kobylinski KC, Deus KM, da Silva IM, Gray M, Sylla M, Foy BD. Comparative evaluation of systemic drugs for their effects against Anopheles gambiae. Acta Trop. 2012 Jan;121(1):34–43. doi: 10.1016/j.actatropica.2011.10.007.
    1. Chaccour C, Lines J, Whitty CJ. Effect of ivermectin on Anopheles gambiae mosquitoes fed on humans: the potential of oral insecticides in malaria control. J Infect Dis. 2010 Jul 1;202(1):113–6. doi: 10.1086/653208.
    1. malERA Consultative Group on Drugs A research agenda for malaria eradication: drugs. PLoS Med. 2011 Jan 25;8(1):e1000402. doi: 10.1371/journal.pmed.1000402.
    1. Kobylinski KC, Foy BD, Richardson JH. Ivermectin inhibits the sporogony of Plasmodium falciparum in Anopheles gambiae. Malar J. 2012 Nov 21;11:381. doi: 10.1186/1475-2875-11-381.
    1. Foley DH, Bryan JH, Lawrence GW. The potential of ivermectin to control the malaria vector Anopheles farauti. Trans R Soc Trop Med Hyg. 2000;94(6):625–8.
    1. Ouédraogo AL, Bastiaens GJ, Tiono AB, Guelbéogo WM, Kobylinski KC, Ouédraogo A, Barry A, Bougouma EC, Nebie I, Ouattara MS, Lanke KH, Fleckenstein L, Sauerwein RW, Slater HC, Churcher TS, Sirima SB, Drakeley C, Bousema T. Efficacy and safety of the mosquitocidal drug ivermectin to prevent malaria transmission after treatment: a double-blind, randomized, clinical trial. Clin Infect Dis. 2015 Feb 1;60(3):357–65. doi: 10.1093/cid/ciu797.
    1. Kobylinski KC, Deus KM, Butters MP, Hongyu T, Gray M, da Silva IM, Sylla M, Foy BD. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop. 2010 Nov;116(2):119–26. doi: 10.1016/j.actatropica.2010.06.001.
    1. Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, Foy BD. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar J. 2010 Dec 20;9:365. doi: 10.1186/1475-2875-9-365.
    1. Kobylinski KC, Sylla M, Chapman PL, Sarr MD, Foy BD. Ivermectin mass drug administration to humans disrupts malaria parasite transmission in Senegalese villages. Am J Trop Med Hyg. 2011 Jul;85(1):3–5. doi: 10.4269/ajtmh.2011.11-0160.
    1. Alout H, Krajacich BJ, Meyers JI, Grubaugh ND, Brackney DE, Kobylinski KC, Diclaro JW, Bolay FK, Fakoli LS, Diabaté A, Dabiré RK, Bougma RW, Foy BD. Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments. Malar J. 2014 Nov 03;13:417. doi: 10.1186/1475-2875-13-417.
    1. Slater HC, Walker PG, Bousema T, Okell LC, Ghani AC. The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. J Infect Dis. 2014 Dec 15;210(12):1972–80. doi: 10.1093/infdis/jiu351.
    1. Burgess IF, Silverston P. Head Lice. Systematic Review 1703. 2015. [2016-09-06]. .
    1. Chosidow O, Giraudeau B, Cottrell J, Izri A, Hofmann R, Mann SG, Burgess I. Oral ivermectin versus malathion lotion for difficult-to-treat head lice. N Engl J Med. 2010 Mar 11;362(10):896–905. doi: 10.1056/NEJMoa0905471.
    1. Awadzi K, Opoku NO, Addy ET, Quartey BT. The chemotherapy of onchocerciasis. XIX: the clinical and laboratory tolerance of high dose ivermectin. Trop Med Parasitol. 1995 Jun;46(2):131–7.
    1. Awadzi K, Attah SK, Addy ET, Opoku NO, Quartey BT. The effects of high-dose ivermectin regimens on Onchocerca volvulus in onchocerciasis patients. Trans R Soc Trop Med Hyg. 1999;93(2):189–94.
    1. Guzzo CA, Furtek CI, Porras AG, Chen C, Tipping R, Clineschmidt CM, Sciberras DG, Hsieh JY, Lasseter KC. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J Clin Pharmacol. 2002 Oct;42(10):1122–33.
    1. Kamgno J, Gardon J, Gardon-Wendel N, Demanga-Ngangue. Duke BO, Boussinesq M. Adverse systemic reactions to treatment of onchocerciasis with ivermectin at normal and high doses given annually or three-monthly. Trans R Soc Trop Med Hyg. 2004 Aug;98(8):496–504. doi: 10.1016/j.trstmh.2003.10.018.
    1. Fobi G, Gardon J, Kamgno J, Aimard-Favennec L, Lafleur C, Gardon-Wendel N, Duke BO, Boussinesq M. A randomized, double-blind, controlled trial of the effects of ivermectin at normal and high doses, given annually or three-monthly, against Onchocerca volvulus: ophthalmological results. Trans R Soc Trop Med Hyg. 2005 Apr;99(4):279–89. doi: 10.1016/j.trstmh.2004.04.003.
    1. Gardon J, Boussinesq M, Kamgno J, Gardon-Wendel N, Demanga-Ngangue. Duke BO. Effects of standard and high doses of ivermectin on adult worms of Onchocerca volvulus: a randomised controlled trial. Lancet. 2002 Jul 20;360(9328):203–10. doi: 10.1016/S0140-6736(02)09456-4.
    1. Omura S. Ivermectin: 25 years and still going strong. Int J Antimicrob Agents. 2008 Feb;31(2):91–8. doi: 10.1016/j.ijantimicag.2007.08.023.
    1. Fox LM. Ivermectin: uses and impact 20 years on. Curr Opin Infect Dis. 2006 Dec;19(6):588–93. doi: 10.1097/QCO.0b013e328010774c.
    1. Gardon J, Gardon-Wendel N, Demanga-Ngangue. Kamgno J, Chippaux JP, Boussinesq M. Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for Loa loa infection. Lancet. 1997 Jul 5;350(9070):18–22. doi: 10.1016/S0140-6736(96)11094-1.
    1. Wanji S, Akotshi DO, Mutro MN, Tepage F, Ukety TO, Diggle PJ, Remme JH. Validation of the rapid assessment procedure for loiasis (RAPLOA) in the Democratic Republic of Congo. Parasit Vectors. 2012 Feb 02;5:25. doi: 10.1186/1756-3305-5-25.
    1. Sigma Tao Eurartesim product information. 2011. [2016-09-06]. .
    1. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012 Oct;92(4):414–7. doi: 10.1038/clpt.2012.96.
    1. Merck & Co Ivermectin product information. 2010. [2016-09-06]. .
    1. El-Tahtawy A, Glue P, Andrews EN, Mardekian J, Amsden GW, Knirsch CA. The effect of azithromycin on ivermectin pharmacokinetics—a population pharmacokinetic model analysis. PLoS Negl Trop Dis. 2008 May 14;2(5):e236. doi: 10.1371/journal.pntd.0000236.
    1. Fritz ML, Siegert PY, Walker ED, Bayoh MN, Vulule JR, Miller JR. Toxicity of bloodmeals from ivermectin-treated cattle to Anopheles gambiae s.l. Ann Trop Med Parasitol. 2009 Sep;103(6):539–47. doi: 10.1179/000349809X12459740922138.
    1. Baraka OZ, Mahmoud BM, Marschke CK, Geary TG, Homeida MM, Williams JF. Ivermectin distribution in the plasma and tissues of patients infected with Onchocerca volvulus. Eur J Clin Pharmacol. 1996;50(5):407–10.
    1. Bousema T, Dinglasan RR, Morlais I, Gouagna LC, van WT, Awono-Ambene PH, Bonnet S, Diallo M, Coulibaly M, Tchuinkam T, Mulder B, Targett G, Drakeley C, Sutherland C, Robert V, Doumbo O, Touré Y, Graves PM, Roeffen W, Sauerwein R, Birkett A, Locke E, Morin M, Wu Y, Churcher TS. Mosquito feeding assays to determine the infectiousness of naturally infected Plasmodium falciparum gametocyte carriers. PLoS One. 2012;7(8):e42821. doi: 10.1371/journal.pone.0042821.
    1. World Health Organization. UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases . Microscopy for the Detection, Identification and Quantification of Malaria Parasites on Stained Thick and Thin Blood Films in Research Settings. Geneva: World Health Organization; 2015.
    1. Ouédraogo AL, Guelbéogo WM, Cohuet A, Morlais I, King JG, Gon-çalves BP. A protocol for membrane feeding assays to determine the infectiousness of P. falciparum naturally infected individuals to Anopheles gambiae. Malariaworld J. 2013;4(16)
    1. Stone WJ, Eldering M, van GG, Lanke KH, Grignard L, van de Vegte-Bolmer MG, Siebelink-Stoter R, Graumans W, Roeffen WF, Drakeley CJ, Sauerwein RW, Bousema T. The relevance and applicability of oocyst prevalence as a read-out for mosquito feeding assays. Sci Rep. 2013 Dec 04;3:3418. doi: 10.1038/srep03418.
    1. Bell AS, Ranford-Cartwright LC. A real-time PCR assay for quantifying Plasmodium falciparum infections in the mosquito vector. Int J Parasitol. 2004 Jun;34(7):795–802. doi: 10.1016/j.ijpara.2004.03.008.
    1. World Wide Antimalarial Resistance Network (WWARN) Analytical toolkit. [2016-09-06]. .

Source: PubMed

3
Abonnieren