Coordinated Reset Vibrotactile Stimulation Induces Sustained Cumulative Benefits in Parkinson's Disease

Kristina J Pfeifer, Justus A Kromer, Alexander J Cook, Traci Hornbeck, Erika A Lim, Bruce J P Mortimer, Adam S Fogarty, Summer S Han, Rohit Dhall, Casey H Halpern, Peter A Tass, Kristina J Pfeifer, Justus A Kromer, Alexander J Cook, Traci Hornbeck, Erika A Lim, Bruce J P Mortimer, Adam S Fogarty, Summer S Han, Rohit Dhall, Casey H Halpern, Peter A Tass

Abstract

Background: Abnormal synchronization of neuronal activity in dopaminergic circuits is related to motor impairment in Parkinson's disease (PD). Vibrotactile coordinated reset (vCR) fingertip stimulation aims to counteract excessive synchronization and induce sustained unlearning of pathologic synaptic connectivity and neuronal synchrony. Here, we report two clinical feasibility studies that examine the effect of regular and noisy vCR stimulation on PD motor symptoms. Additionally, in one clinical study (study 1), we examine cortical beta band power changes in the sensorimotor cortex. Lastly, we compare these clinical results in relation to our computational findings.

Methods: Study 1 examines six PD patients receiving noisy vCR stimulation and their cortical beta power changes after 3 months of daily therapy. Motor evaluations and at-rest electroencephalographic (EEG) recordings were assessed off medication pre- and post-noisy vCR. Study 2 follows three patients for 6+ months, two of whom received daily regular vCR and one patient from study 1 who received daily noisy vCR. Motor evaluations were taken at baseline, and follow-up visits were done approximately every 3 months. Computationally, in a network of leaky integrate-and-fire (LIF) neurons with spike timing-dependent plasticity, we study the differences between regular and noisy vCR by using a stimulus model that reproduces experimentally observed central neuronal phase locking.

Results: Clinically, in both studies, we observed significantly improved motor ability. EEG recordings observed from study 1 indicated a significant decrease in off-medication cortical sensorimotor high beta power (21-30 Hz) at rest after 3 months of daily noisy vCR therapy. Computationally, vCR and noisy vCR cause comparable parameter-robust long-lasting synaptic decoupling and neuronal desynchronization.

Conclusion: In these feasibility studies of eight PD patients, regular vCR and noisy vCR were well tolerated, produced no side effects, and delivered sustained cumulative improvement of motor performance, which is congruent with our computational findings. In study 1, reduction of high beta band power over the sensorimotor cortex may suggest noisy vCR is effectively modulating the beta band at the cortical level, which may play a role in improved motor ability. These encouraging therapeutic results enable us to properly plan a proof-of-concept study.

Keywords: Parkinson’s disease; beta band power; coordinated reset; cumulative effects; desynchronization; sensorimotor; vibrotactile stimulation.

Conflict of interest statement

TH works as consultant for Boston Scientific and received teaching honoraria for DBS courses. RD has served as a clinical trials investigator for Impax Pharmaceuticals, Pharma2B, CALA Health, Axovant and Neurocrine Biosciences. CH has received speaking honoraria and consulting fees from Boston Scientific, Medtronic, and NeuroPace. PT works as consultant for Boston Scientific Neuromodulation and Gretap AG and is inventor on a number of patents for non-invasive neuromodulation. BM is employed by Engineering Acoustics who manufacture vibrotactile systems. No further disclosures. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Pfeifer, Kromer, Cook, Hornbeck, Lim, Mortimer, Fogarty, Han, Dhall, Halpern and Tass.

Figures

FIGURE 1
FIGURE 1
Stimulation patterns used throughout the paper. (A) Regular 3:2 ON-OFF coordinated reset with rapidly varying sequence (CR RVS) pattern. (B) Noisy 3:2 ON-OFF CR RVS pattern and 23.5% jitter. (C) Purely periodic multichannel stimulation. Gray lines indicate multiples of the vibrotactile coordinated reset (vCR) period TCR, and dotted lines indicate multiples of TCR/4 during individual CR periods. Roman numerals indicate fingertips on one hand. Stimulation bursts are marked red. Red vertical lines indicate maxima of fvib(t), Eq. (2), during individual bursts. Parameters: fCR = 1.5 Hz (TCR4 = 166.7 ms), burst duration 100 ms, and fburst = 250 Hz.
FIGURE 2
FIGURE 2
Study procedures were as follows: 1–2 weeks before the first visit, while on medication, Parkinson’s disease (PD) patients took the Movement Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) parts 1,2, and 4, Parkinson’s Disease Questionnaire-39 (PDQ-39), Scales for Outcomes in Parkinson’s Disease-COGnition (SCOPA-COG) and reported levodopa equivalent daily dose (LEDD). On the first visit, PD patients were off medication and the MDS-UPDRS 3 was administered, followed by an at-rest electroencephalography (EEG). Patients withdrew their medication again overnight and on day 2 patients were assessed with a morning MDS-UPDRS part 3, followed by 2 × 2 h of vibrotactile coordinated reset (vCR) stimulation and then an afternoon MDS-UPDRS part 3 (directly after 4 h of stimulation) to assess acute effects of vCR. After day 2, patients were instructed at home to do 2 h of vCR treatment in the morning and 2 h in the afternoon or night. The assessments described above were then repeated at 3 months of vCR treatment.
FIGURE 3
FIGURE 3
Yellow highlighted areas indicate selected electrodes for source estimation. Data from electrodes near or on the cheeks or close to the nape of the neck were removed to reduce noise. Vertical (E18, E37) and lateral (E252, E226) eye electrodes are highlighted in green.
FIGURE 4
FIGURE 4
The yellow highlighted region of the Schaefer 200 parcellation map (Schaefer et al., 2018) represents the somatomotor A region of interest (ROI). This ROI was used for source analysis.
FIGURE 5
FIGURE 5
(A) On the first visit, Parkinson’s disease (PD) patients displayed a significant acute effect for vibrotactile coordinated reset (vCR) treatment. Specifically, Movement Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) III pretreatment scores (M = 39.833, SD = 11.14) significantly decreased after 4 h of stimulation (M = 31.833, SD = 9.38). (B) Additionally, MDS-UPDRS III pretreatment scores (M = 38.33 ± 7.86) significantly decreased after 3 months of vCR treatment (M = 32.33, SD = 7.80). Panel (C) represents baseline (M = 45, SD = 9.89) and 3-month (M = 34, SD = 9.89) MDS-UPDRS III data for the two patients in study 2 who received regular vCR. While no statistics can be used due to the small sample size, regular vCR results are represented visuallyfor comparison to the noisy vCR results. Regardless of vCR type, these findings suggest significant improvement of motor ability. Panels (A,B) show box plots, whereas the boxes in panel (C) simply comprise the two patients’ values.
FIGURE 6
FIGURE 6
To assess clinical significance of acute and cumulative treatment outcomes, minimal clinically important differences (MCID = –3.25) were compared to Movement Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) score changes [i.e., Delta MDS-UPDRS III = post-vibrotactile coordinated reset (vCR) MDS-UPDRS III minus pre-vCR MDS-UPDRS III] obtained by subtracting pretreatment (baseline) vCR MDS-UPDRS III scores from posttreatment vCR MDS-UPDRS III scores on the first visit to measure acute effects (green bars) and by subtracting pretreatment (baseline) vCR MDS-UPDRS III scores from posttreatment vCR MDS-UPDRS III scores after 3 months of vCR treatment to measure cumulative effects (orange bars). For acute effects measured on the first visit, five out of six patients were able to clinically reduce MDS-UPDRS III after 4 h of vCR treatment. Additionally, all patients showed a clinically significant reduction of MDS-UPDRS III scores after 3 months of vCR treatment.
FIGURE 7
FIGURE 7
Displays relative power for the high beta (21–30 Hz) band in the somatomotor A region. At-rest recordings revealed that the sensorimotor region on day 1 pre-vibrotactile coordinated reset (vCR) (A) (M = 0.079 ± 0.036) significantly decreased in high beta relative power after 3 months of vCR treatment (B) (M = 0.058 ± 0.025).
FIGURE 8
FIGURE 8
Displays cumulative chronic, months-long effects of vibrotactile coordinated reset (vCR) treatment. For all three patients, significant negative correlations for the Movement Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) III were found [Patient 1 (A), r = –0.744, p = 0.001; Patient 2 (B), r = –0.998, p = 0.002; Patient 3 (C), r = –0.992, p = 0.001). Patient 3 (C) also exhibited a slight decrease in MDS-UPDRS III scores at the preplanned 1-month pause in stimulation between 6 and 7 months. These results suggest significant improvement of motor ability.
FIGURE 9
FIGURE 9
Stimulation shapes neuronal spiking activity. Raster plots of neuronal spiking activity during the first few seconds of vibrotactile stimulation with a regular vibrotactile coordinated reset (vCR) pattern (A), a noisy vCR pattern (same sequence as regular CR but with jitter of 23.5%) (B), and vibratory purely periodic multichannel stimulation (vPPMS) (C). Sensory inputs caused by vibratory burst delivery to corresponding fingertips are marked red. Parameters: t = 0 marks onset of stimulation with fCR = 1.67 Hz and A = A0.
FIGURE 10
FIGURE 10
Long-lasting desynchronization by sensory stimulation with noisy vibrotactile coordinated reset (vCR). (A) Time trace of the Kuramoto order parameter ρ(t) and the mean synaptic weight ⟨w⟩(t) before, during (red), and after noisy vCR stimulation. (B) Snapshots of connectivity matrices containing the values of all synaptic weights wi→j(t) evaluated at indicated times after onset of stimulation; see also labels in panel (A). Parameters: J = 23.5%, fCR = 1.5 Hz, and A = A0.
FIGURE 11
FIGURE 11
Parameter dependence of stimulation-induced desynchronization and weight dynamics in the neuronal network model. (A–C) Acute effects of regular vibrotactile coordinated reset (vCR) (A), noisy vCR (B), and vibratory purely periodic multichannel stimulation (vPPMS) (C). Columns show results for the acute Kuramoto order parameter ρac evaluated shortly before stimulation ceases (first column); the corresponding mean synaptic weight wac (second column); and mean weights of intrapopulation (third column) and interpopulation synapses (fourth column), respectively. (D–F) Corresponding long-lasting effects of regular vCR (D), noisy vCR (E), and vPPMS (F) evaluated 1 h after cessation of stimulation. Here, the first column shows the Kuramoto order parameter ρll and the second column the mean synaptic weight wll. For comparison, the mean period of the original synchronous rhythm (1/fsynch,fsynch = 286 ms) is marked by vertical dashed red lines. All results were time-averaged over an interval of 12 s shortly before cessation of stimulation (A–C) and 1 h after cessation of stimulation (D–F). Data points show ensemble averages (marked by angular brackets) over five network and sequence realizations. Results for noisy vCR were obtained using a jitter of 23.5%.

References

    1. Abbott L. F., Nelson S. B. (2000). Synaptic plasticity: taming the beast. Nat. Neurosci. 3 1178–1183. 10.1038/81453
    1. Adamchic I., Hauptmann C., Barnikol U. B., Pawelczyk N., Popovych O., Barnikol T. T., et al. (2014). Coordinated reset neuromodulation for Parkinson’s disease: proof−of−concept study. Mov. Disord. 29 1679–1684. 10.1002/mds.25923
    1. Asanuma H., Mackel R. (1989). Direct and indirect sensory input pathways to the motor cortex; its structure and function in relation to learning of motor skills. Japn. J. Physiol. 39 1–19. 10.2170/jjphysiol.39.1
    1. Baquet Z. C., Gorski J. A., Jones K. R. (2004). Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci. 24 4250–4258. 10.1523/jneurosci.3920-03.2004
    1. Benabid A. L., Pollak P., Gao D., Hoffmann D., Limousin P., Gay E., et al. (1996). Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J. Neurosurg. 84 203–214. 10.3171/jns.1996.84.2.0203
    1. Bi G. Q., Poo M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18 10464–10472. 10.1523/jneurosci.18-24-10464.1998
    1. Bronte-Stewart H., Barberini C., Koop M. M., Hill B. C., Henderson J. M., Wingeier B. (2009). The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp. Neurol. 215 20–28. 10.1016/j.expneurol.2008.09.008
    1. Brown P. (2003). Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov. Disord. 18 357–363. 10.1002/mds.10358
    1. Brown P., Oliviero A., Mazzone P., Insola A., Tonali P., Di Lazzaro V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci. 21 1033–1038. 10.1523/jneurosci.21-03-01033.2001
    1. Burke D., Hagbarth K. E., Löfstedt L., Wallin B. G. (1976). The responses of human muscle spindle endings to vibration of non−contracting muscles. J. Physiol. 261 673–693. 10.1113/jphysiol.1976.sp011580
    1. Caporale N., Dan Y. (2008). Spike timing–dependent plasticity: a Hebbian learning rule. Ann. Rev. Neurosci. 31 25–46. 10.1146/annurev.neuro.31.060407.125639
    1. Chen L., Liu Z., Tian Z., Wang Y., Li S. (2000). Prevention of neurotoxin damage of 6-OHDA to dopaminergic nigral neuron by subthalamic nucleus lesions. Stereotact. Funct. Neurosurg. 75 66–75. 10.1159/000048385
    1. Collins D. F., Refshauge K. M., Todd G., Gandevia S. C. (2005). Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. J. Neurophysiol. 94 1699–1706. 10.1152/jn.00191.2005
    1. Contarino M. F., Bour L. J., Bot M., van den Munckhof P., Speelman J. D., Schuurman P. R., et al. (2012). Tremor-specific neuronal oscillation pattern in dorsal subthalamic nucleus of parkinsonian patients. Brain Stimul. 5 305–314. 10.1016/j.brs.2011.03.011
    1. Crabtree J. W. (2018). Functional diversity of thalamic reticular subnetworks. Front. Syst. Neurosci. 12:41. 10.3389/fnsys.2018.00041
    1. Crabtree J. W., Isaac J. T. R. (2002). New intrathalamic pathways allowing modality-related and cross-modality switching in the dorsal thalamus. J. Neurosci. 22 8754–8761. 10.1523/jneurosci.22-19-08754.2002
    1. Craig J. C. (1985). Attending to two fingers: two hands are better than one. Percept. Psychophys. 38 496–511. 10.3758/bf03207059
    1. Craig J. C., Qian X. (1997). Tactile pattern perception by two fingers: temporal interference and response competition. Percept. Psychophys. 59 252–265. 10.3758/bf03211893
    1. Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134 9–21. 10.1016/j.jneumeth.2003.10.009
    1. Deogracias R., Yazdani M., Dekkers M. P. J., Guy J., Ionescu M. C. S., Vogt K. E., et al. (2012). Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proc. Natl. Acad. Sci. U.S.A. 109 14230–14235. 10.1073/pnas.1206093109
    1. Dincher A., Schwarz M., Wydra G. (2019). Analysis of the effects of whole−body vibration in parkinson disease–systematic review and meta−analysis. PM R 11 640–653. 10.1002/pmrj.12094
    1. Ebersbach G., Edler D., Kaufhold O., Wissel J. (2008). Whole body vibration versus conventional physiotherapy to improve balance and gait in Parkinson’s disease. Arch. Phys. Med. Rehabil. 89 399–403. 10.1016/j.apmr.2007.09.031
    1. Ebersole J. S., Milton J. (2003). “The electroencephalogram (EEG): a measure of neural synchrony,” in Epilepsy as a Dynamic Disease, eds Milton J., Jung P. (Berlin: Springer; ), 51–68. 10.1007/978-3-662-05048-4_5
    1. Edin B. B., Abbs J. H. (1991). Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of the human hand. J. Neurophysiol. 65 657–670. 10.1152/jn.1991.65.3.657
    1. El-Tahawy H., Lozano A. M., Dostrovsky J. O. (2004). “Electrophysiological findings in Vim and Vc,” in Microelectrode Recording in Movement Disorder Surgery, ed. Liu S. (New York, NY: Thieme Medical Publishers, Inc.), 63–71.
    1. Espay A. J., Fasano A., Van Nuenen B. F. L., Payne M. M., Snijders A. H., Bloem B. R. (2012). “On” state freezing of gait in Parkinson disease: a paradoxical levodopa-induced complication. Neurology 78 454–457. 10.1212/wnl.0b013e3182477ec0
    1. Flaherty A. W., Graybiel A. M. (1991). Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J. Neurophysiol. 66 1249–1263. 10.1152/jn.1991.66.4.1249
    1. Gescheider G. A., Berryhill M. E., Verrillo R. T., Bolanowski S. J. (1999). Vibrotactile temporal summation: probability summation or neural integration? Somatosens. Motor Res. 16 229–242. 10.1080/08990229970483
    1. Giannicola G., Marceglia S., Rossi L., Mrakic-Sposta S., Rampini P., Tamma F., et al. (2010). The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson’s disease. Exp. Neurol. 226 120–127. 10.1016/j.expneurol.2010.08.011
    1. Goetz C. G., Leurgans S., Raman R., Stebbins G. T. (2000). Objective changes in motor function during placebo treatment in PD. Neurology 54 710–714. 10.1212/wnl.54.3.710
    1. Goetz C. G., Tilley B. C., Shaftman S. R., Stebbins G. T., Fahn S., Martinez−Martin P., et al. (2008a). Movement disorder society−sponsored revision of the unified Parkinson’s disease rating scale (MDS−UPDRS): scale presentation and clinimetric testing results. Mov. Dis. 23 2129–2170. 10.1002/mds.22340
    1. Goetz C. G., Wuu J., McDermott M. P., Adler C. H., Fahn S., Freed C. R., et al. (2008b). Placebo response in Parkinson’s disease: comparisons among 11 trials covering medical and surgical interventions. Mov. Disord. 23 690–699. 10.1002/mds.21894
    1. Goodwin A. W. (2005). Paradoxes in tactile adaptation. focus on “Vibratory adaptation in cutaneous mechanoreceptive afferents” and “Time-course of vibratory adaptation and recovery in cutaneous mechanoreceptive afferents”. J. Neurophysiol. 94 2995–2996. 10.1152/jn.00766.2005
    1. Goodwin G. M., McCloskey D. I., Matthews P. B. C. (1972). The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95 705–748. 10.1093/brain/95.4.705
    1. Green B. G. (1976). Vibrotactile temporal summation: effect of frequency. Sens. Process. 1 138–149.
    1. Haas C. T., Turbanski S., Kessler K., Schmidtbleicher D. (2006). The effects of random whole-body-vibration on motor symptoms in Parkinson’s disease. NeuroRehabilitation 21 29–36. 10.3233/nre-2006-21105
    1. Hahn J. F. (1968). Low-frequency vibrotactile adaptation. J. Exp. Psychol. 78(4 Pt 1) 655–659. 10.1037/h0026621
    1. Hamdy S., Rothwell J. C., Aziz Q., Singh K. D., Thompson D. G. (1998). Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat. Neurosci. 1 64–68. 10.1038/264
    1. Hammond C., Bergman H., Brown P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30 357–364. 10.1016/j.tins.2007.05.004
    1. Hartmann-von Monakow K., Akert K., Künzle H. (1978). Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp. Brain Res. 33 395–403.
    1. Harvey M. A., Saal H. P., Dammann J. F., III, Bensmaia S. J. (2013). Multiplexing stimulus information through rate and temporal codes in primate somatosensory cortex. PLoS Biol. 11:e1001558. 10.1371/journal.pbio.1001558
    1. Hauptmann C., Tass P. A. (2009). Cumulative and after-effects of short and weak coordinated reset stimulation: a modeling study. J. Neural Eng. 6:016004. 10.1088/1741-2560/6/1/016004
    1. Holden S. K., Finseth T., Sillau S. H., Berman B. D. (2018). Progression of MDS−UPDRS scores over five years in de novo Parkinson disease from the Parkinson’s progression markers initiative cohort. Mov. Dis. Clin. Pract. 5 47–53. 10.1002/mdc3.12553
    1. Hollins M., Goble A. K., Whitsel B. L., Tommerdahl M. (1990). Time course and action spectrum of vibrotactile adaptation. Somatosens. Motor Res. 7 205–221. 10.3109/08990229009144707
    1. Horváth K., Aschermann Z., Ács P., Deli G., Janszky J., Komoly S., et al. (2015). Minimal clinically important difference on the Motor examination part of MDS-UPDRS. Parkinsonism Relat. Disord. 21 1421–1426. 10.1016/j.parkreldis.2015.10.006
    1. Hyafil A., Giraud A. L., Fontolan L., Gutkin B. (2015). Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 38 725–740. 10.1016/j.tins.2015.09.001
    1. Hyvarinen A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10 626–634. 10.1109/72.761722
    1. Iriki A., Pavlides C., Keller A., Asanuma H. (1989). Long-term potentiation in the motor cortex. Science 245 1385–1387. 10.1126/science.2551038
    1. Jenkinson C., Fitzpatrick R., Peto V., Greenhall R., Hyman N. (1997). The Parkinson’s disease questionnaire (PDQ-39): development and validation of a Parkinson’s disease summary index score. Age Ageing 26 353–357. 10.1093/ageing/26.5.353
    1. Johansson R. S., Vallbo ÅB. (1983). Tactile sensory coding in the glabrous skin of the human hand. Trends Neurosci. 6 27–32. 10.1016/0166-2236(83)90011-5
    1. Jones E. G., Powell T. P. S. (1968). The commissural connexions of the somatic sensory cortex in the cat. J. Anat. 103(Pt 3) 433–455.
    1. Jones E. G., Powell T. P. S. (1969). Connexions of the somatic sensory cortex of the rhesus monkey: I.—Ipsilateral cortical connexions. Brain 92 477–502. 10.1093/brain/92.3.477
    1. Kaneko T., Caria M. A., Asanuma H. (1994). Information processing within the motor cortex. I. Responses of morphologically identified motor cortical cells to stimulation of the somatosensor cortex. J. Comp. Neurol. 345 161–171. 10.1002/cne.903450202
    1. Keller A., Iriki A., Asanuma H. (1990). Identification of neurons producing long−term potentiation in the cat motor cortex: intracellular recordings and labeling. J. Comp. Neurol. 300 47–60. 10.1002/cne.903000105
    1. Khaindrava V., Salin P., Melon C., Ugrumov M., Kerkerian-Le-Goff L., Daszuta A. (2011). High frequency stimulation of the subthalamic nucleus impacts adult neurogenesis in a rat model of Parkinson’s disease. Neurobiol. Dis. 42 284–291. 10.1016/j.nbd.2011.01.018
    1. King L. K., Almeida Q. J., Ahonen H. (2009). Short-term effects of vibration therapy on motor impairments in Parkinson’s disease. NeuroRehabilitation 25 297–306. 10.3233/nre-2009-0528
    1. Kita T., Shigematsu N., Kita H. (2016). Intralaminar and tectal projections to the subthalamus in the rat. Eur. J. Neurosci. 44 2899–2908. 10.1111/ejn.13413
    1. Knibestöl M. (1973). Stimulus-response functions of rapidly adapting mechanoreceptors in the human glabrous skin area. J. Physiol. 232 427–452. 10.1113/jphysiol.1973.sp010279
    1. Knoblauch A., Hauser F., Gewaltig M.-O., Körner E., Palm G. (2012). Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony? Front. Comput. Neurosci. 6:55. 10.3389/fncom.2012.00055
    1. Kromer J. A., Khaledi-Nasab A., Tass P. A. (2020). Impact of number of stimulation sites on long-lasting desynchronization effects of coordinated reset stimulation. Chaos 30:083134. 10.1063/5.0015196
    1. Kromer J. A., Tass P. A. (2020). Long-lasting desynchronization by decoupling stimulation. Phys. Rev. Res. 2:033101.
    1. Kuramoto Y. (1984). Chemical Oscillations, Waves, and Turbulence. Berlin: Springer.
    1. Kühn A. A., Kupsch A., Schneider G.-H., Brown P. (2006). Reduction in subthalamic 8-35 hz oscillatory activity correlates with clinical improvement in parkinson’s disease. Eur. J. Neurosci. 23 1956–1960. 10.1111/j.1460-9568.2006.04717.x
    1. Lau R. W. K., Teo T., Yu F., Chung R. C. K., Pang M. Y. C. (2011). Effects of whole-body vibration on sensorimotor performance in people with Parkinson disease: a systematic review. Phys. Ther. 91 198–209. 10.2522/ptj.20100071
    1. Lee B.-C., Martin B. J., Sienko K. H. (2012). Directional postural responses induced by vibrotactile stimulations applied to the torso. Exp. Brain Rres. 222 471–482. 10.1007/s00221-012-3233-2
    1. Leung Y. Y., Bensmaïa S. J., Hsiao S. S., Johnson K. O. (2005). Time-course of vibratory adaptation and recovery in cutaneous mechanoreceptive afferents. J. Neurophysiol. 94 3037–3045. 10.1152/jn.00001.2005
    1. Li X., Xing Y., Martin-Bastida A., Piccini P., Auer D. P. (2018). Patterns of grey matter loss associated with motor subscores in early Parkinson’s disease. Neuroimage Clin. 17 498–504. 10.1016/j.nicl.2017.11.009
    1. Lindenbach D., Bishop C. (2013). Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson’s disease. Neurosci. Biobehav. Rev. 37 2737–2750. 10.1016/j.neubiorev.2013.09.008
    1. López-Azcárate J., Tainta M., Rodríguez-Oroz M. C., Valencia M., González R., Guridi J., et al. (2010). Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J. Neurosci. 30 6667–6677. 10.1523/jneurosci.5459-09.2010
    1. Lubenov E. V., Siapas A. G. (2008). Decoupling through synchrony in neuronal circuits with propagation delays. Neuron 58 118–131. 10.1016/j.neuron.2008.01.036
    1. Ly Q. T., Handojoseno A. M. A., Gilat M., Nguyen N., Chai R., Tran Y., et al. (2016). “Detection of gait initiation failure in Parkinson’s disease patients using EEG signals,” in Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (Orlando, FL: IEEE; ), 1599–1602.
    1. Lysyansky B., Popovych O. V., Tass P. A. (2011). Desynchronizing anti-resonance effect of m: n ON–OFF coordinated reset stimulation. J. Neural Eng. 8:036019. 10.1088/1741-2560/8/3/036019
    1. Maesawa S., Kaneoke Y., Kajita Y., Usui N., Misawa N., Nakayama A., et al. (2004). Long-term stimulation of the subthalamic nucleus in hemiparkinsonian rats: neuroprotection of dopaminergic neurons. J. Neurosurg. 100 679–687. 10.3171/jns.2004.100.4.0679
    1. Majhi S., Bera B. K., Ghosh D., Perk M. (2019). Chimera states in neuronal networks: a review. Phys. Life Rev. 28 100–121. 10.1016/j.plrev.2018.09.003
    1. Mao T., Kusefoglu D., Hooks B. M., Huber D., Petreanu L., Svoboda K. (2011). Long-range neuronal ciruits underlying the interaction between sensory and motor cortex. Neuron 71 111–123. 10.1016/j.neuron.2011.07.029
    1. Marín P. J., Herrero A. J., Milton J. G., Hazell T. J., García-López D. (2013). Whole-body vibration applied during upper body exercise improves performance. J. Strength Cond. Res. 27 1807–1812. 10.1519/jsc.0b013e3182772f00
    1. Markram H., Lübke J., Frotscher M., Sakmann B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275 213–215. 10.1126/science.275.5297.213
    1. Marsden J. F., Limousin-Dowsey P., Ashby P., Pollak P., Brown P. (2001). Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson’s disease. Brain 124 378–388. 10.1093/brain/124.2.378
    1. Milosevic L., Kalia S. K., Hodaie M., Lozano A. M., Popovic M. R., Hutchison W. D. (2018). Physiological mechanisms of thalamic ventral intermediate nucleus stimulation for tremor suppression. Brain 141 2142–2155. 10.1093/brain/awy139
    1. Mullen T. R., Kothe C. A. E., Chi Y. M., Ojeda A., Kerth T., Makeig S., et al. (2015). Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans. Biomed. Eng. 62 2553–2567. 10.1109/tbme.2015.2481482
    1. Musacchio T., Rebenstorff M., Fluri F., Brotchie J. M., Volkmann J., Koprich J. B., et al. (2017). Subthalamic nucleus deep brain stimulation is neuroprotective in the A53T α−synuclein Parkinson’s disease rat model. Ann. Neurol. 81 825–836. 10.1002/ana.24947
    1. Musall S., von Pföstl V., Rauch A., Logthetis N. K., Whittingstall K. (2014). Effects of neural synchrony on surface EEG. Cereb. Cortex 24 1045–1053. 10.1093/cercor/bhs389
    1. Nagatsu T., Mogi M., Ichinose H., Togari A. (2000). “Changes in cytokines and neurotrophins in Parkinson’s disease,” in Advances in Research on Neurodegeneration, eds Riederer P., Calne D. B., Horowski R., Mizuno Y., Olanow C. W., Poewe W., et al. (New York, NY: Springer; ), 277–290. 10.1007/978-3-7091-6301-6_19
    1. Nagatsu T., Sawada M. (2005). Inflammatory process in Parkinson’s disease: role for cytokines. Curr. Pharm. Design 11 999–1016. 10.2174/1381612053381620
    1. Nakao N., Nakai E., Nakai K., Itakura T. (1999). Ablation of the subthalamic nucleus supports the survival of nigral dopaminergic neurons after nigrostriatal lesions induced by the mitochondrial toxin 3−nitropropionic acid. Ann. Neurol. 45 640–651. 10.1002/1531-8249(199905)45:5<640::;2-u
    1. Nambu A., Takada M., Inase M., Tokuno H. (1996). Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J. Neurosci. 16 2671–2683. 10.1523/jneurosci.16-08-02671.1996
    1. Naros G., Grimm F., Weiss D., Gharabaghi A. (2018). Directional communication during movement execution interferes with tremor in Parkinson’s disease. Mov. Disord. 33 251–261. 10.1002/mds.27221
    1. Neuper C., Pfurtscheller G. (2001). Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int. J. Psychophysiol. 43 41–58. 10.1016/s0167-8760(01)00178-7
    1. Neuper C., Schlögl A., Pfurtscheller G. (1999). Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery. J. Clin. Neurophysiol. 16 373–382. 10.1097/00004691-199907000-00010
    1. Neuper C., Wörtz M., Pfurtscheller G. (2006). ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog. Brain Res. 159 211–222. 10.1016/s0079-6123(06)59014-4
    1. Pascual-Marqui R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl. D) 5–12.
    1. Perrin F., Pernier J., Bertrand O., Echallier J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 72 184–187. 10.1016/0013-4694(89)90180-6
    1. Piallat B., Benazzouz A., Benabid A. L. (1996). Subthalamic nucleus lesion in rats prevents dopaminergic nigral neuron degeneration after striatal 6−OHDA injection: behavioural and immunohistochemical studies. Eur. J. Neurosci. 8 1408–1414. 10.1111/j.1460-9568.1996.tb01603.x
    1. Popovych O. V., Tass P. A. (2012). Desynchronizing electrical and sensory coordinated reset neuromodulation. Front. Hum. Neurosci. 6:58. 10.3389/fnhum.2012.00058
    1. Powanwe A. S., Longtin A. (2019). Determinants of brain rhythm burst statistics. Sci. Rep. 9:18335.
    1. Priori A., Foffani G., Pesenti A., Tamma F., Bianchi A. M., Pellegrini M., et al. (2004). Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp. Neurol. 189 369–379. 10.1016/j.expneurol.2004.06.001
    1. Ribot-Ciscar E., Vedel J. P., Roll J. P. (1989). Vibration sensitivity of slowly and rapidly adapting cutaneous mechanoreceptors in the human foot and leg. Neurosci. Lett. 104 130–135. 10.1016/0304-3940(89)90342-x
    1. Roll J. P., Vedel J. P. (1982). Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp. Brain Res. 47 177–190.
    1. Roll J. P., Vedel J. P., Ribot E. (1989). Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp. Brain Res. 76 213–222.
    1. Rosenblum M., Pikovsky A., Kurths J., Schäfer C., Tass P. A. (2001). “Phase synchronization: from theory to data analysis,” in Handbook of Biological Physics, Vol. 4 eds Moss F., Gielen S. (Amsterdam: Elsevier Science; ), 279–321. 10.1016/s1383-8121(01)80012-9
    1. Rosenkranz K., Rothwell J. C. (2003). Differential effect of muscle vibration on intracortical inhibitory circuits in humans. J. Physiol. 551 649–660. 10.1113/jphysiol.2003.043752
    1. Schaefer A., Kong R., Gordon E. M., Laumann T. O., Zuo X.-N., Holmes A. J., et al. (2018). Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28 3095–3114. 10.1093/cercor/bhx179
    1. Seo N. J., Lakshminarayanan K., Lauer A. W., Ramakrishnan V., Schmit B. D., Hanlon C. A., et al. (2019). Use of imperceptible wrist vibration to modulate sensorimotor cortical activity. Exp. Brain Res. 237 805–816. 10.1007/s00221-018-05465-z
    1. Spieles-Engemann A. L., Steece-Collier K., Behbehani M. M., Collier T. J., Wohlgenant S. L., Kemp C. J., et al. (2011). Subthalamic nucleus stimulation increases brain derived neurotrophic factor in the nigrostriatal system and primary motor cortex. J. Parkinsons Dis. 1 123–136. 10.3233/jpd-2011-11008
    1. Stebbins G. T., Goetz C. G., Burn D. J., Jankovic J., Khoo T. K., Tilley B. C. (2013). How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson’s disease rating scale: comparison with the unified Parkinson’s disease rating scale. Mov. Disord. 28 668–670. 10.1002/mds.25383
    1. Steigerwald F., Pötter M., Herzog J., Pinsker M., Kopper F., Mehdorn H., et al. (2008). Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state. J. Neurophysiol. 100 2515–2524. 10.1152/jn.90574.2008
    1. Sugimoto T., Hattori T., Mizuno N., Itoh K., Sato M. (1983). Direct projections from the centre median−parafascicular complex to the subthalamic nucleus in the cat and rat. J. Comp. Neurol. 214 209–216. 10.1002/cne.902140208
    1. Syrkin−Nikolau J., Neuville R., O’Day J., Anidi C., Koop M. M., Martin T., et al. (2018). Coordinated reset vibrotactile stimulation shows prolonged improvement in Parkinson’s disease. Mov. Disord. 33 179–180. 10.1002/mds.27223
    1. Tadel F., Baillet S., Mosher J. C., Pantazis D., Leahy R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011:879716.
    1. Tass P., Smirnov D., Karavaev A., Barnikol U., Barnikol T., Adamchic I., et al. (2010). The causal relationship between subcortical local field potential oscillations and Parkinsonian resting tremor. J. Neural Eng. 7:016009. 10.1088/1741-2560/7/1/016009
    1. Tass P. A. (1999). Phase Resetting in Medicine and Biology: Stochastic Modelling and Data Analysis. Berlin: Springer.
    1. Tass P. A. (2003). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol. Cybernet. 89 81–88. 10.1007/s00422-003-0425-7
    1. Tass P. A. (2017). Vibrotactile coordinated reset stimulation for the treatment of neurological diseases: concepts and device specifications. Cureus 9;e1535.
    1. Tass P. A., Majtanik M. (2006). Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study. Biol. Cybernet. 94 58–66. 10.1007/s00422-005-0028-6
    1. Tass P. A., Qin L., Hauptmann C., Dovero S., Bezard E., Boraud T., et al. (2012). Coordinated reset has sustained after effects in Parkinsonian monkeys. Ann. Neurol. 72 816–820. 10.1002/ana.23663
    1. Toledo J. B., López-Azcárate J., Garcia-Garcia D., Guridi J., Valencia M., Artieda J., et al. (2014). High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease. Neurobiol. Dis. 64 60–65. 10.1016/j.nbd.2013.12.005
    1. Tomlinson C. L., Stowe R., Patel S., Rick C., Gray R., Clarke C. E. (2010). Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 25 2649–2653. 10.1002/mds.23429
    1. Verbaan D., Jeukens−Visser M., Van Laar T., van Rooden S. M., Van Zwet E. W., Marinus J., et al. (2011). SCOPA−cognition cutoff value for detection of Parkinson’s disease dementia. Mov. Disord. 26 1881–1886. 10.1002/mds.23750
    1. Vitek J. L., Ashe J., DeLong M. R., Alexander G. E. (1994). Physiologic properties and somatotopic organization of the primate motor thalamus. J. Neurophysiol. 71 1498–1513. 10.1152/jn.1994.71.4.1498
    1. Wallace B. A., Ashkan K., Heise C. E., Foote K. D., Torres N., Mitrofanis J., et al. (2007). Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain 130 2129–2145. 10.1093/brain/awm137
    1. Wang J., Nebeck S., Muralidharan A., Johnson M. D., Vitek J. L., Baker K. B. (2016). Coordinated reset deep brain stimulation of subthalamic nucleus produces long-lasting, dose-dependent motor improvements in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine non-human primate model of parkinsonism. Brain Stimul. 9 609–617. 10.1016/j.brs.2016.03.014
    1. Weinberger M., Mahant N., Hutchison W. D., Lozano A. M., Moro E., Hodaie M., et al. (2006). Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J. Neurophysiol. 96 3248–3256. 10.1152/jn.00697.2006
    1. Weiss N., Ohara S., Johnson K. O., Lenz F. A. (2009). The human thalamic somatic sensory nucleus [ventral caudal (Vc)] shows neuronal mechanoreceptor-like responses to optimal stimuli for peripheral mechanoreceptors. J. Neurophysiol. 101 1033–1042. 10.1152/jn.90990.2008
    1. Whitmer D., de Solages C., Hill B., Yu H., Henderson J. M., Bronte-Stewart H. (2012). High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Front. Hum. Neurosci. 6:155. 10.3389/fnhum.2012.00155
    1. Williams D., Tijssen M., Van Bruggen G., Bosch A., Insola A., Di Lazzaro V., et al. (2002). Dopamine−dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125 1558–1569. 10.1093/brain/awf156
    1. Zeitler M., Tass P. A. (2015). Augmented brain function by coordinated reset stimulation with slowly varying sequences. Front. Syst. Neurosci. 9:49. 10.3389/fnsys.2015.00049
    1. Zeitler M., Tass P. A. (2018). Computationally developed sham stimulation protocol for multichannel desynchronizing stimulation. Front. Physiol. 9:512. 10.3389/fphys.2018.00512
    1. Zhao L., He L. X., Huang S. N., Gong L. J., Li L., Lv Y. Y., et al. (2014). Protection of dopamine neurons by vibration training and up-regulation of brain-derived neurotrophic factor in a MPTP mouse model of Parkinson’s disease. Physiol. Res. 63 649–657. 10.33549/physiolres.932743
    1. Zuccato C., Cattaneo E. (2007). Role of brain-derived neurotrophic factor in Huntington’s disease. Prog. Neurobiol. 81 294–330. 10.1016/j.pneurobio.2007.01.003

Source: PubMed

3
Abonnieren