Effects of prescription niacin and omega-3 fatty acids on lipids and vascular function in metabolic syndrome: a randomized controlled trial

Gregory C Shearer, James V Pottala, Susan N Hansen, Verdayne Brandenburg, William S Harris, Gregory C Shearer, James V Pottala, Susan N Hansen, Verdayne Brandenburg, William S Harris

Abstract

The metabolic syndrome includes both dyslipidemia and impaired vascular function. Because extended-release niacin (ERN) and prescription omega-3 acid ethyl-esters (P-OM3) independently improve these characteristics, we tested their effects in combination. Sixty metabolic syndrome subjects were randomized to 16 weeks of treatment on dual placebo, P-OM3 (4 g/day), ERN (2 g/day), or combination in a double-blind trial. Lipoprotein subfractions and vascular endpoints were measured and tested using ANCOVA. ERN increased HDL cholesterol by 5.4 mg/dl from baseline (P = 0.04), decreased triglycerides (TG) by 39 mg/dl (-21%, P = 0.003), and decreased the augmentation index, which is a measure of vascular stiffness, by 3.5 units (P = 0.04). P-OM3 reduced TG by 26 mg/dl (-13%, P = 0.04). Combination treatment increased HDL cholesterol by 7.8 mg/dl (P = 002) and decreased TG by 72 mg/dl (-34%) but there was no improvement in vascular stiffness. Detailed analysis of lipoprotein subfractions revealed increased large, bouyant HDL(2) (3.3 mg/dl; P = 0.002) and decreased VLDL(1+2) (-32%; P < 0.0001), among subjects treated with combination therapy, that were not present with either therapy alone. ERN and P-OM3 alone improved characteristics of metabolic syndrome; however, whereas subjects on combination therapy did not have improved vascular stiffness, TG and HDL levels improved as did certain lipoprotein subfractions.

Trial registration: ClinicalTrials.gov NCT00286234.

Figures

Fig. 1.
Fig. 1.
Flow diagram for the study. a safety (elevated CPK), inadequate IV access; b rash, flushing; c inadequate IV access, time constraints, migraine headache; d without index finger, problematic RHI measurement at baseline; e error, subject should have been excluded for high BMI.
Fig. 2.
Fig. 2.
Changes in triglycerides (TG) (including 95% CI bands) as a function of the change in omega-3 index (OMX) levels in the two groups that received P-OM3. For each group, the extent of TG lowering was in proportion to the relative increase in OMX (P = 02). The greater TG lowering with combination therapy is reflected in the step function between treatment groups (P = 0.001). The line at y=1 represents identity, or no change from baseline. The results are shown as the least-squares fit of the semi-log line, note the log-scale of the y -axis. Using the ratios of DHA and of EPA (as final/baseline) gave similar results. N = 30; because there was no change in OMX or TG levels for subjects on placebo P-OM3, they were not included in the analysis.

References

    1. Ford E. S., Giles W. H., Dietz W. H. 2002. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 287: 356–359
    1. Milionis H. J., Rizos E., Goudevenos J., Seferiadis K., Mikhailidis D. P., Elisaf M. S. 2005. Components of the metabolic syndrome and risk for first-ever acute ischemic nonembolic stroke in elderly subjects. Stroke. 36: 1372–1376
    1. Qiao Q. 2006. Comparison of different definitions of the metabolic syndrome in relation to cardiovascular mortality in European men and women. Diabetologia. 49: 2837–2846
    1. Katzmarzyk P. T., Janssen I., Ross R., Church T. S., Blair S. N. 2006. The importance of waist circumference in the definition of metabolic syndrome: prospective analyses of mortality in men. Diabetes Care. 29: 404–409
    1. Brillante D. G., O'Sullivan A. J., Howes L. G. 2009. Arterial stiffness in insulin resistance: the role of nitric oxide and angiotensin II receptors. Vasc. Health Risk Manag. 5: 73–78
    1. Gazi I., Tsimihodimos V., Filippatos T., Bairaktari E., Tselepis A. D., Elisaf M. 2006. Concentration and relative distribution of low-density lipoprotein subfractions in patients with metabolic syndrome defined according to the National Cholesterol Education Program criteria. Metabolism. 55: 885–891
    1. Ageno W., Prandoni P., Romualdi E., Ghirarduzzi A., Dentali F., Pesavento R., Crowther M., Venco A. 2006. The metabolic syndrome and the risk of venous thrombosis: a case-control study. J. Thromb. Haemost. 4: 1914–1918
    1. Tanko L. B., Bagger Y. Z., Qin G., Alexandersen P., Larsen P. J., Christiansen C. 2005. Enlarged waist combined with elevated triglycerides is a strong predictor of accelerated atherogenesis and related cardiovascular mortality in postmenopausal women. Circulation. 111: 1883–1890
    1. Guyton J. R., Goldberg A. C., Kreisberg R. A., Sprecher D. L., Superko H. R., O'Connor C. M. 1998. Effectiveness of once-nightly dosing of extended-release niacin alone and in combination for hypercholesterolemia. Am. J. Cardiol. 82: 737–743
    1. Villines T. C., Stanek E. J., Devine P. J., Turco M., Miller M., Weissman N. J., Griffen L., Taylor A. J. 2010. The ARBITER 6-HALTS Trial (Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies in Atherosclerosis): final results and the impact of medication adherence, dose, and treatment duration. J. Am. Coll. Cardiol. 55: 2721–2726
    1. Canner P. L., Berge K. G., Wenger N. K., Stamler J., Friedman L., Prineas R. J., Friedewald W. 1986. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J. Am. Coll. Cardiol. 8: 1245–1255
    1. Boden W. E., Probstfield J. L., Anderson T., Chaitman B. R., Desvignes-Nickens P., Koprowicz K., McBride R., Teo K., Weintraub W. 2011. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365: 2255–2267
    1. Davidson M. H., Stein E. A., Bays H. E., Maki K. C., Doyle R. T., Shalwitz R. A., Ballantyne C. M., Ginsberg H. N. 2007. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin. Ther. 29: 1354–1367
    1. Harris W. S., Ginsberg H. N., Arunakul N., Shachter N. S., Windsor S. L., Adams M., Berglund L., Osmundsen K. 1997. Safety and efficacy of Omacor in severe hypertriglyceridemia. J. Cardiovasc. Risk. 4: 385–391
    1. Marchioli R., Barzi F., Bomba E., Chieffo C., Di Gregorio D., Di Mascio R., Franzosi M. G., Geraci E., Levantesi G., Maggioni A. P., et al. 2002. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione. Circulation. 105: 1897–1903
    1. Marchioli R., Levantesi G., Silletta M. G., Barlera S., Bernardinangeli M., Carbonieri E., Cosmi F., Franzosi M. G., Latini R., Lucci D., et al. 2009. Effect of n-3 polyunsaturated fatty acids and rosuvastatin in patients with heart failure: results of the GISSI-HF trial. Expert Rev. Cardiovasc. Ther. 7: 735–748
    1. Yokoyama M., Origasa H., Matsuzaki M., Matsuzawa Y., Saito Y., Ishikawa Y., Oikawa S., Sasaki J., Hishida H., Itakura H., et al. 2007. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 369: 1090–1098
    1. Dangardt F., Osika W., Chen Y., Nilsson U., Gan L. M., Gronowitz E., Strandvik B., Friberg P. 2010. Omega-3 fatty acid supplementation improves vascular function and reduces inflammation in obese adolescents. Atherosclerosis. 212: 580–585
    1. Hamilton S. J., Chew G. T., Davis T. M., Watts G. F. 2010. Niacin improves small artery vasodilatory function and compliance in statin-treated type 2 diabetic patients. Diab. Vasc. Dis. Res. 7: 296–299
    1. Isley W. L., Miles J. M., Harris W. S. 2007. Pilot study of combined therapy with ω-3 fatty acids and niacin in atherogenic dyslipidemia. J. Clin. Lipidol. 1: 211–217
    1. Bonetti P. O., Pumper G. M., Higano S. T., Holmes D. R., Jr, Kuvin J. T., Lerman A. 2004. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J. Am. Coll. Cardiol. 44: 2137–2141
    1. Hamburg N. M., Keyes M. J., Larson M. G., Vasan R. S., Schnabel R., Pryde M. M., Mitchell G. F., Sheffy J., Vita J. A., Benjamin E. J. 2008. Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation. 117: 2467–2474
    1. Yasmin, Brown M. J. 1999 Similarities and differences between augmentation index and pulse wave velocity in the assessment of arterial stiffness. QJM 92: 595–600.
    1. Harris W. S., Von Schacky C. 2004. The Omega-3 Index: a new risk factor for death from coronary heart disease? Prev. Med. 39: 212–220
    1. McLaughlin T., Abbasi F., Cheal K., Chu J., Lamendola C., Reaven G. 2003. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann. Intern. Med. 139: 802–809
    1. McLaughlin T., Reaven G., Abbasi F., Lamendola C., Saad M., Waters D., Simon J., Krauss R. M. 2005. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am. J. Cardiol. 96: 399–404
    1. Dachet C., Cavallero E., Martin C., Girardot G., Jacotot B. 1995. Effect of gemfibrozil on the concentration and composition of very low density and low density lipoprotein subfractions in hypertriglyceridemic patients. Atherosclerosis. 113: 1–9
    1. Superko H. R., Gadesam R. R. 2008. Is it LDL particle size or number that correlates with risk for cardiovascular disease? Curr. Atheroscler. Rep. 10: 377–385
    1. Kuvin J. T., Dave D. M., Sliney K. A., Mooney P., Patel A. R., Kimmelstiel C. D., Karas R. H. 2006. Effects of extended-release niacin on lipoprotein particle size, distribution, and inflammatory markers in patients with coronary artery disease. Am. J. Cardiol. 98: 743–745
    1. Harris W. S. 1996. n-3 fatty acids and lipoproteins: comparison of results from human and animal studies. Lipids. 31: 243–252
    1. Von Schacky C. 2010. Omega-3 fatty acids vs. cardiac disease–the contribution of the omega-3 index. Cell Mol Biol (Noisy-le-grand). 56: 93–101

Source: PubMed

3
Abonnieren