Caloric restriction and genomic stability

Ahmad R Heydari, Archana Unnikrishnan, Lisa Ventrella Lucente, Arlan Richardson, Ahmad R Heydari, Archana Unnikrishnan, Lisa Ventrella Lucente, Arlan Richardson

Abstract

Caloric restriction (CR) reduces the incidence and progression of spontaneous and induced tumors in laboratory rodents while increasing mean and maximum life spans. It has been suggested that CR extends longevity and reduces age-related pathologies by reducing the levels of DNA damage and mutations that accumulate with age. This hypothesis is attractive because the integrity of the genome is essential to a cell/organism and because it is supported by observations that both cancer and immunological defects, which increase significantly with age and are delayed by CR, are associated with changes in DNA damage and/or DNA repair. Over the last three decades, numerous laboratories have examined the effects of CR on the integrity of the genome and the ability of cells to repair DNA. The majority of studies performed indicate that the age-related increase in oxidative damage to DNA is significantly reduced by CR. Early studies suggest that CR reduces DNA damage by enhancing DNA repair. With the advent of genomic technology and our increased understanding of specific repair pathways, CR has been shown to have a significant effect on major DNA repair pathways, such as NER, BER and double-strand break repair.

Figures

Figure 1.
Figure 1.
Modulation of genomic stability.

References

    1. McCay C.M., Crowell M.F., Maynard L.A. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 1935;10:63–79.
    1. Yu B.P., Masoro E.J., Murata I., Bertrand H.A., Lynd F.T. Life span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: Longevity, growth, lean body mass and disease. J. Gerontol. 1982;37:130–141.
    1. Weindruch R., Walford R.L., Fligiel S., Guthrie D. The retardation of aging in mice by dietary restriction: Longevity, cancer, immunity and lifetime energy intake. J. Nutr. 1986;116:654.
    1. Masoro E.J. Food restriction in rodents: An evaluation of its role in the study of aging. J. Gerontol. 1988;43:B59–B64.
    1. Masoro E.J., Shimokawa I., Yu B.P. Retardation of the aging processes in rats by food restriction. Ann. N. Y. Acad. Sci. 1991;621:337–352.
    1. Masoro EJ. Dietary restriction: An experimental approach to the study of the biology of aging. In: Masoro EJ, Austad SN, editors. Handbook of the Biology of Aging. 5th edn. San Diego, CA: Academic Press; 2001. pp. 396–420.
    1. Masoro EJ. Assessment of nutritional components in prolongation of life and health by diet. Proc. Soc. Exp. Biol. Med. 1990;193:31–34.
    1. Kubo C, Johnson BC, Gajjar A, Good RA. Crucial Dietary Factors in Maximizing Life Span and Longevity in Autoimmune-Prone Mice. J. Nutr. 1987;117:1129–1135.
    1. Masoro EJ. Nutrition and aging: A current assessment. J. Nutr. 1985;115:842–848.
    1. Yu BP, Masoro EJ, Maman CA. Nutritional influences on aging of Fischer 344 rats: I. Physical, metabolic, and longevity characteristics. J. Gerontol. 1985;40:657–670.
    1. Zimmerman JA, Malloy V, Krajck R, Orentreich N. Nutritional control of aging. Exp. Gerontol. 2003;38:47–52.
    1. Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-1 and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4:119–125.
    1. Masoro EJ, Iwasaki L, Gleiser CA, McMahan CA, Seo E, Yu. BP. Dietary modulation of the progression of nephropathy in aging rats: An evaluation of the importance of protein. Am. J. Clin. Nutr. 1989;49:217–227.
    1. Masoro E.J. Overview of caloric restriction and ageing. Mech. Ageing Dev. 2005;126:913–922.
    1. Masoro E.J. Potential role of the modulation of fuel use in the antiaging action of dietary restriction. Ann. N. Y. Acad. Sci. 1992;663:403–411.
    1. Masoro E.J. Retardation of aging processes by food restriction: An experimental tool. Am. J. Clin. Nutr. 1992;55
    1. Heydari A.R., Richardson A. Does gene expression play any role in the mechanism of the antiaging effect of dietary restriction. Ann. N. Y. Acad. Sci. 1992;663:384–395.
    1. Masoro E.J. Antiaging action of caloric restriction: endocrine and metabolic aspects. Obes. Res. 1995;3
    1. Heydari A.R., You S., Takahashi R., Gutsmann A., Sarge K.D., Richardson A. Effect of caloric restriction on the expression of heat shock protein 70 and the activation of heat shock transcription factor 1. Dev. Genet. 1996;18:114–124.
    1. Berg B.N., Simms H.S. Nutrition and longevity in the rat: II. Longevity and onset of disease with different levels of food intake. J. Nutr. 1960;71:255–263.
    1. Sacher G.A. Life table modification and life prolongation. In: Finch C.E., Hayflick L., editors. Handbook of the biology of aging. New York: Van Nostrand Reinhold; 1977. pp. 582–638.
    1. McCarter R.J., Masoro E.J., Yu B.P. Does food restriction retard aging by reducing the metabolic rate? Am. J. Physiol. 1985;248:E488–E490.
    1. McCarter R.J., McGee J.R. Transient reduction of metabolic rate by food restriction. Am. J. Physiol. 1989;257:E175–E179.
    1. Yu B.P. Aging and oxidative stress: modulation by dietary restriction. Free Radic. Biol. Med. 1996;21:651–668.
    1. Zainal T.A., Oberley T.D., Allison D.B., Szweda L.I., Weindruch R. Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB. 2000;14:1825–1836.
    1. Feuers R.J., Weindruch R., Hart R.W. Caloric restriction, aging, and antioxidant enzymes. Mutat. Res. 1993;295:191–200.
    1. Hyun D-H., Emerson S.S., Jo D-G., Mattson M.P., De Cabo R. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc. Natl Acad. Sci. 2006;103:19908–19912.
    1. De Cabo R., Cabello R., Rios M., Lopez-Lluch G., Ingram D.K., Lane M.A., Navas P. Calorie restriction attenuates age-related alterations in the plasma membrane antioxidant system in rat liver. Exp. Gerontol. 2004;39:297–304.
    1. Gou Z.M., Yang H., Hamilton M.L., VanRemmen H., Richardson A. Effects of age and food restriction on oxidative DNA damage and antioxidant enzyme activities in the mouse aorta. Mech. Ageing Dev. 2001;122:1771–1786.
    1. Armeni T., Pieri C., Marra M., Sacucci F., Principato G. Studies on the life prolonging effects of food restriction: glutathione levels and glyoxylase enzymes in rat liver. Mech. Ageing Dev. 1998;101:101–110.
    1. Xia E., Rao G., VanRemmen H., Heydari A.R., Richardson A. Activities of antioxidant enzymes in various tissues of male Fischer 344 ratas are altered by food restriction. J. Nutr. 1995;125:195–201.
    1. Guo Z.M., Heydari A.R., Richardson A. Nucleotide excision repair of actively transcribed versus nontranscribed DNA in rat hepatocytes. Exp. Cell. Res. 1998;245:228–238.
    1. Cabelof D.C., Yanamadala S., Raffoul J.J., Guo Z., Soofi A., Heydari A.R. Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline. DNA Repair. 2003;2:295–307.
    1. Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA. Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J. 2004;18:595–597.
    1. Masoro E.J., McCarter R.J.M., Katz M.S., McMahan C.A. Dietary restriction alters the characterize of glucose fuel use. J. Gerontol. Biol. Sci. 1992;47:208.
    1. Kemnitz J.W., Roecker E.B., Weindruch R., Elson D.F., Baum S.T., Bergmann R.N. Dietary restriction increases insulin sensitivity and lowers blood glucose in Rhesus monkeys. Am. J. Physiol. 1994;266:E540–E547.
    1. Cefalu W.T., Wagner J.D., Wang Z.Q., Bell-Farrow A.D., Collins J., Haskell D., Bechtold R., Morgan T. A study of caloric restriction and cardiovascular aging in cynomolgus monkeys (macaca facicularis): a potential model for aging research. J. Gerontol. Biol. Sci. 1997;52A:19.
    1. Bluher M., Kahn B.B., Kahn R.C. Extended longetivity in mice lacking the insulin receptor in adipose tissue. Science. 2003;299:572–574.
    1. Ingram D.K., Zhu M., Mamczarz J., Zou S., Lane M.A., Roth G.S., DeCabo R. Calorie restriction memetics: an emerging research field. Aging Cell. 2006;5:97–108.
    1. D’costa A.P., Lenham J.E., Ingram R.L., Sonntag W.E. Moderate caloric restriction increases type 1 IGF receptors and protein synthesis in aging rats. Mech. Ageing. Dev. 1993;71:59–71.
    1. Coschigano K.T., Clemmons D., Bellush M.E., Kopchick J.J. Assessment of growth parameters and lifespan of GHR/BP gene-disrupted mice. Endocrinology. 2000;141:2608–2613.
    1. Heydari A.R., Wu B., Takahashi R., Strong R., Richardson A. Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol. Cell. Biol. 1993;13:410–418.
    1. Picard F., Kurtev M., Chung N., Topark-Ngarm A., Senawong T., De Oliveira K.M., Leid M., McBurney M.W., Guarente L. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature. 2004;429:771–776.
    1. Lin S.J., Defossez P.A., Guarente L. Requirement of NAD and Sir 2 for life-span extension by caloric restriction in Saccharomyces cerevisiae. Science. 2000;289:2126–2128.
    1. Anderson R.M., Bitterman K.J., Wood J.G., Medvedik O., Sinclair D.A. Nicotinamide and PNC1 govern lifespan extension by caloric restriction in Saccharomyces cervisiae. Nature. 2003;423:181–185.
    1. Um J.H., Kim S.J., Kim D.W., Ha M.Y., Jang J.H., Kim D.W., Chung B.S., Kang C.D., Kim S.H. Tissue-specific changes of DNA repair protein Ku and mtHSP70 in aging rats and their retardation by caloric restriction. Mech. Ageing Dev. 2003;124:967–975.
    1. Raffoul J.J., Guo Z., Soofi A., Heydari A.R. Caloric restriction and genomic stability. J. Nutr. Health Aging. 1993;3:102–110.
    1. Haley-Zitlin V., Richardson A. Effect of dietary restriction on DNA repair and DNA damage. Mutat. Res. 1993;295:237–245.
    1. Tannenbaum A. The initiation and growth of tumors. Introduction. I. Effects of underfeeding. Am. J. Cancer. 1940;38:335–350.
    1. Tannenbaum A. The initiation and growth of tumors. II. Effects of caloric restriction per se. Cancer Res. 1942;2:460–467.
    1. Saxton J.A., Jr., Boon M.C., Furth J. Observations on the inhibition of development of spontaneous leukemia in mice by underfeeding. Cancer Res. 1944;4:401–409.
    1. Visscher R.L., Ball Z.B., Barnes R.H., Sivertsen I. The influence of caloric restriction upon the incidence of spontaneous mammary carcinoma in mice. Surgery. 1942;11:48–55.
    1. Weraarchakul N., Strong R., Wood W.G., Richardson A. The effect of aging and dietary restriction on DNA repair. Exp. Cell Res. 1989;181:204.
    1. Szilard L. On the nature of aging process. Proc. Natl. Acad. Sci. USA. 1959;45:30–45.
    1. Alexander P. The role of DNA lesions in processes leading to aging in mice. Sym. Soc. Exp. Biol. 1967;21:29–51.
    1. Mullaart E., Lohman P.H., Berends F., Vijg J. DNA damage metabolism and aging. Mutat. Res. 1990;37:189–210.
    1. Bohr V.A., Anson R.M. DNA damage, mutation, and fine structure DNA repair in aging. Mutat. Res. 1995;338:25–34.
    1. Koshland D.E., Jr. Molecule of the year: the DNA repair enzyme. Science. 1994;266:1925.
    1. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Ann. Rev. Biochem. 2004;73:39–85.
    1. Sancar A. Mechanisms of DNA excision repair. Science. 1994;266:1954–1956.
    1. Hanawalt P.C. Evolution of concepts in DNA repair. Environ. Mol. Mutagen. 1994;23 (Suppl. 24):78–85.
    1. Hanawalt P.C., Donahue B.A., Sweder K.S. Repair and transcription. Collision or collusion? Current Biol. 1994;4:518–521.
    1. Modrich P. Mismatch repair, genetic stability, and cancer. Science. 1994;266:1959–1960.
    1. Holmquist F.P. Endogenous lesions, S-phase-independent spontaneous mutations, and evolutionary strategies for base excision repair. Mutat. Res. 1998;400:59–68.
    1. Lindahl T. Suppression of spontaneous mutagenesis in human cells by DNA base excision- repair. Mutat. Res. 2000;462:129–135.
    1. Wiebauer K., Jiricny J. Mismatch-specific thymine DNA glycosylase and DNA polymerase β mediate the correction of G.T mispairs in nuclear extracts from human cells. Proc. Natl. Acad. Sci. USA. 1990;87:5842–5845.
    1. Matsumoto Y., Bogenhagen D.F. Repair of a synthetic abasic site involves concerted reactions of DNA synthesis followed by excision and ligation. Mol. Cell. Biol. 1991;11:4441–4447.
    1. Dianov G., Price A., Lindahl T. Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol. Cell. Biol. 1992;12:1612.
    1. Sancar A. DNA excision repair. Ann. Rev. Biochem. 1996;65:43–81.
    1. Hart R.W., Setlow R.B. Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc. Natl. Acad. Sci. USA. 1974;71:2169–2173.
    1. Hall K.Y., Hart R.W., Benirschke A.K., Walford R.L. Correlation between ultraviolet-induced DNA repair in primate lymphocytes and fibroblasts and species maximum achievable life span. Mech. Ageing Dev. 1984;24:163–173.
    1. Kato H., Hasoda M., Tsuchiya K., Mariwaki K. Absence of correlation between DNA repair in ultraviolet irradiated mammalian cells and life span of donor species. Jpn. J. Genet. 1980;55:99–108.
    1. Walter C.A., Grabowski D.T., Street K.A., Conrad C.C., Richardson A. Analysis and modulation of DNA repair in aging. Mech. Ageing Dev. 1997;98:203–222.
    1. Sobol R.W., Horton J.K., Kuhn R, Hua G., Singhal R.K., Prasad R., Rajewsky K., Wilson S.H. Requirement of mammalian DNA polymerase β in base-excision repair. Nature. 1996;379:183–186.
    1. Cabelof D.C., Ikeno Y., Nyska A., Busuttil R.A., Anyangwe N., Vijg J., Matherly L.H., Tucker J.D., Wilson S.H., et al. Haploinsufficiency in DNA polymerase β increases cancer risk with age and alters mortality rate. Cancer Res. 2006;66:7460–7465.
    1. Giese H., Dolle M.E.T., Hezel A., Van Steeg H., Vijg J. Accelerated accumulation of somatic mutations in mice deficient in the nucleotide excision repair gene XPA. Oncogene. 1999;18:1257–1260.
    1. De Vries A., Van Oostrom C.T.M., Dortant P.M., Beems R.M., Van Kreijl C.F., Capel P.J.A., Van Steeg H. Spontaneous liver tumors and benzo[a]pyrene-induced lymphomas in XPA-deficient mice. Carcinogenesis. 1997;19:46–53.
    1. Wijnhoven S.W.P., Kool H.J.M., Mullenders L.H.F., Van Zeeland A.A, Friedberg E.C., Van der Horst G.T.J, Van Steeg H., Vrieling H. Age-dependent spontaneous mutagenesis in Xpc mice defective in nucleotide excision repair. Oncogene. 2000;19:5037.
    1. Friedberg E.C., Bond J.P., Burns D.K., Cheo D.L., Greenblatt M.S., Meira L.B., Nahari D., Reis A.M. Defective nucleotide excision repair in Xpc mutant mice and its association with cancer predisposition. Mutat. Res. 2000;459:99–108.
    1. Hasty P., Campisi J., Hoeijmakers J., Van steeg H., Vijg J. Aging and Genome maintenance: lessons from the mouse? Science. 2003;299:1355–1359.
    1. Dolle M.E.T., Busuttil R.A., Garcia A.M., Wijnhoven S., Van Drunen E., Niedernhofer L.J., Van der Horst G., Hoeijmakers J.H.J., Van Steeg H., et al. Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutat. Res. 2006;596:22–35.
    1. Licastro F., Weindruch R., Davis L.J., Walford R.L. Effect of dietary restriction upon the age-associated decline of lymphocyte DNA repair activity in mice. Age. 1988;11:48–52.
    1. Srivastava V.K., Busbee D.L. Decreased fidelity of DNA polymerases and decreased DNA excision repair in aging mice: effects of caloric restriction. Biochem. Biophys. Res. Commun. 1992;182:712–721.
    1. Tilley R., Miller S., Srivastava V., Busbee D. Enhanced unscheduled DNA synthesis by secondary cultures of lung cells established from calorically restricted aged rats. Mech. Ageing Dev. 1992;63:165–176.
    1. Lipman J.M., Turturro A., Hart R.W. The influence of dietary restriction on DNA repair in rodents: A preliminary study. Mech Ageing Dev. 1989;48:135–143.
    1. Asakura S., Sawada S., Daimon H., Fukuda T., Ogura K., Yamatsu K., Furihata C. Effects of dietary restriction on induction of unscheduled DNA synthesis (UDS) and replicative DNA synthesis (RDS) in rat liver. Mutation Res. 1994;322:257–264.
    1. Shaddock J.G., Feuers R.J., Chou M.W., Casciano D.A. Evidence that DNA repair may not be modified by age or chronic caloric restriction. Mutation Res. 1993;301:261–266.
    1. Bohr V.A. Carcinogenesis. 1991;12:1983–1992.
    1. Bohr V.A., Smith C.A., Okumoto D.S., Hanawalt P.C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985;40:359–369.
    1. Mellon I., Hanawalt P.C. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature. 1989;342:95–98.
    1. Sweder K.S., Hanawalt PC. Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription. Proc. Natl. Acad. Sci. USA. 1992;89:10696–10700.
    1. Guo Z., Heydari A.R., Wu W., Yang H., Sabia M.R., Richardson A. Characterization of gene-specific DNA repair by primary cultures of rat hepatocytes. J Cell Physiol. 1998;176:314–322.
    1. Mellon I., Spivak G., Hanawalt P.C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell. 1987;51:241–249.
    1. Mellon I., Bohr V.A., Smith C.A., Hanawalt P.C. Preferential DNA repair of an active gene in human cells. Proc. Natl. Acad. Sci. USA. 1986;83:8878–8882.
    1. Venema J., Van Hoffen A., Karkagi V., Natarajan A.T., van Zeeland A.A., Mullender L.H.F. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol. Cell. Biol. 1991;11:4128–4134.
    1. Srivastava V.K., Miller S., Schroeder M.D., Hart R.W., Busbee D. Age-related changes in expression and activity of DNA polymerase: Some effects of dietary restriction. Mutation Res. 1993;295:265–280.
    1. Prapurna D.R., Rao K.S. Long-term effects of caloric restriction initiated at different ages on DNA polymerases in rat brain. Mech. Ageing Dev. 2003;92:133–142.
    1. Hasty P. The impact energy metabolism and genome maintenance have on longevity and senescence: lessons from yeast to mammals. Mech. Ageing Dev. 2001;122:1651–1662.
    1. Tsao J.L., Dudley S., Kwok B., Nickel A.E., Laird P.W., Siegmund K.D., Liskay R.M., Shibata D. Diet, cancer and aging in DNA mismatch repair deficient mice. Carcinogenesis. 2002;23:1807–1810.
    1. Dempsey J.L., Pfeiffer M., Morley A.A. Effect of dietary restriction on in vivo somatic mutation in mice. Mutat. Res. 1993;291:141–145.
    1. Casciano D.A., Chou M., Lyn-Cook L.E., Aidoo A. Calorie restriction modulates chemically induced in vivo somatic mutation frequency. Environ. Mol. Mutagen. 1996;27:162–164.
    1. Chung M.H., Kasai H., Nishimura S., Yu B.P. Protection of DNA damage by dietary restriction. Free Radic. Biol. Med. 1992;12:523–525.
    1. Djuric Z., Lu M.H., Lewis S.M., Luongo D.A., Chen X.W., Heilbrun L.K., Reading B.A., Duffy P.H., Hart R.W. Oxidative DNA damage levels in rats fed low-fat, high-fat, or calorie-restricted diets. Toxicol. Appl. Pharmacol. 1992;115:156–160.
    1. Sohal R.S., Agarwal S., Candas M., Forster M.J., Lal H. Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Ageing Dev. 1994;76:215–224.
    1. Kaneko T., Tahara S., Matsuo M. Retarding effect of dietary restriction on the accumulation of 8-hydroxy-2′-deoxyguanosine in organs of Fischer 344 rats during aging. Free. Radic. Biol. Med. 1997;23:76–81.
    1. Simic M.G., Bergtold D.S. Dietary modulation of DNA damage in human. Mutat. Res. 1991;250:17–24.
    1. Simic M.G. DNA markers of oxidative processes in vivo: relevance to carcinogenesis and anticarcinogenesis. Cancer Res. 1994;54:1918–1923.
    1. Fu C.S., Harris S.B., Wilhelmi P., Walford R.L. Lack of effect of age and dietary restriction on DNA single-stranded breaks in brain, liver, and kidney of (C3H x C57BL/10)F1 mice. J. Gerontol. 1991;46:B78–B80.
    1. Wolf F.I., Fasanella S., Tedesco B., Cavallin G., Donati A., Bergamini E., Cittadini A. Peripheral lymphocyte 8-OHdG levels correlate with age-associated increase of tissue oxidative DNA damage in Sprague-Dawley rats. Protective effects of caloric restriction. Exp. Gerontol. 2005;40:181–188.
    1. Hamilton M.L., Guo Z.M., Fuller C.D., Van Remmen H., Ward W.F., Austad S.N., Troyer D.A., Thompson I., Richardson A. A reliable assessment of 8-Oxo-3-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Res. 2001;29:2117–2126.
    1. Hamilton M.L., Van Remmen H., Drake J.A., Yang H., Guo Z.M., Kewitt K., Walter C.A., Richardson A. Does oxidative damage to DNA increase with age? Proc. Natl Acad. Sci., USA. 2001;98:10469–10474.
    1. Ward W.F., Qi W., Van Remmen H., Zackert W.E., Roberts L.J, II, Richardson A. Effects of age and caloric restriction on lipid peroxidation: Measurement of oxidative stress by F2-isoprostane levels. J. Gerontol. 2005;60:847–851.
    1. Melov S., Hinerfeld D., Esposito L., Wallace D.C. Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age. Nucleic Acids Res. 1997;25:974–982.
    1. Kang C.M., Kristal B.S., Yu BP. Age-related mitochondrial DNA deletions: effect of dietary restriction. Free Radic. Biol. Med. 1998;24:148–154.
    1. Lopez-Torres M., Gredilla R., Sanz A., Barja G. Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic. Biol. Med. 2002;32:882–889.
    1. Timiras P.S., Yaghmaie F., Saeed O., Thung E., Chinn G. The ageing phenome: caloric restriction and hormones promote neural cell survival, growth and de-differentiation. Mech. Ageing Dev. 2005;126:3–9.
    1. Shima N., Swiger R.R., Heddle J.A. Dietary restriction during murine development provides protection against MNU-induced mutations. Mutat. Res. 2000;470:189–200.
    1. Cao S.X., Dhahbi J.M., Mote P.L., Spindler S.R. Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc. Natl Acad. Sci. USA. 2001;98:10630–10635.

Source: PubMed

3
Abonnieren