Calculated Parameters of Thyroid Homeostasis: Emerging Tools for Differential Diagnosis and Clinical Research

Johannes W Dietrich, Gabi Landgrafe-Mende, Evelin Wiora, Apostolos Chatzitomaris, Harald H Klein, John E M Midgley, Rudolf Hoermann, Johannes W Dietrich, Gabi Landgrafe-Mende, Evelin Wiora, Apostolos Chatzitomaris, Harald H Klein, John E M Midgley, Rudolf Hoermann

Abstract

Although technical problems of thyroid testing have largely been resolved by modern assay technology, biological variation remains a challenge. This applies to subclinical thyroid disease, non-thyroidal illness syndrome, and those 10% of hypothyroid patients, who report impaired quality of life, despite normal thyrotropin (TSH) concentrations under levothyroxine (L-T4) replacement. Among multiple explanations for this condition, inadequate treatment dosage and monotherapy with L-T4 in subjects with impaired deiodination have received major attention. Translation to clinical practice is difficult, however, since univariate reference ranges for TSH and thyroid hormones fail to deliver robust decision algorithms for therapeutic interventions in patients with more subtle thyroid dysfunctions. Advances in mathematical and simulative modeling of pituitary-thyroid feedback control have improved our understanding of physiological mechanisms governing the homeostatic behavior. From multiple cybernetic models developed since 1956, four examples have also been translated to applications in medical decision-making and clinical trials. Structure parameters representing fundamental properties of the processing structure include the calculated secretory capacity of the thyroid gland (SPINA-GT), sum activity of peripheral deiodinases (SPINA-GD) and Jostel's TSH index for assessment of thyrotropic pituitary function, supplemented by a recently published algorithm for reconstructing the personal set point of thyroid homeostasis. In addition, a family of integrated models (University of California-Los Angeles platform) provides advanced methods for bioequivalence studies. This perspective article delivers an overview of current clinical research on the basis of mathematical thyroid models. In addition to a summary of large clinical trials, it provides previously unpublished results of validation studies based on simulation and clinical samples.

Keywords: SPINA-GD; SPINA-GT; feedback control; homeostasis; set point; sum activity of peripheral deiodinases; thyroid hormones; thyroid’s secretory capacity.

Figures

Figure 1
Figure 1
(A,B) Reliability of SPINA-derived parameters is higher than that of measured hormone concentrations. Shown are results of Monte Carlo evaluation of SPINA-GT and SPINA-GD based on simulated imprecise hormone assays. Hormone concentrations were modeled in SimThyr 4.0 (64) with different pre-defined values for GT and GD, respectively. Subsequently, absolute hormone levels were converted to measurements by means of an S script (see supplementary code for an introductory example) that injected additive and multiplicative noise, in order to get vendor-reported concentration-dependent coefficients of variations (CV) (65, 66). The lines show mean ± SD of hormone concentrations predicted by structure parameters calculated from simulated noisy measurements. CVs as markers for measurement reliability (67) of SPINA-GT and SPINA-GD are below 10% in all cases, although CVs of corresponding hormone assays exceed 20% in low concentrations. (C) SPINA-GT is sensitive for thyroid disorders of primary origin and specific with respect to secondary dysfunction. The plot shows distribution of hormone concentrations in certain primary and secondary thyroid conditions compared to normal percentiles of SPINA-GT. The green crossing rectangles define univariate reference ranges for TSH and FT4, respectively. The purple lines represent FT4 concentrations at the 2 and 97% percentiles of SPINA-GT. Data from RUBIONERVE (registration number 4905-14 at RUB ethics committee) and NOMOTHETICOS studies (UTN U1111-1122-3273, ClinicalTrials.gov ID NCT01145040). (D) SPINA-GD is an estimate for deiodination. Shown is correlation between SPINA-GD and conversion rate in slow tissue pools. Data from Pilo et al. (63).

References

    1. Bahn RS, Burch HB, Cooper DS, Garber JR, Greenlee MC, Klein I, et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Endocr Pract (2011) 17(3):456–520.10.4158/EP.17.3.456
    1. Pantalone KM, Nasr C. Approach to a low TSH level: patience is a virtue. Cleve Clin J Med (2010) 77(11):803–11.10.3949/ccjm.77a.10056
    1. Shrier DK, Burman KD. Subclinical hyperthyroidism: controversies in management. Am Fam Physician (2002) 65(3):431–8.
    1. Koulouri O, Auldin MA, Agarwal R, Kieffer V, Robertson C, Falconer Smith J, et al. Diagnosis and treatment of hypothyroidism in TSH deficiency compared to primary thyroid disease: pituitary patients are at risk of under-replacement with levothyroxine. Clin Endocrinol (Oxf) (2011) 74(6):744–9.10.1111/j.1365-2265.2011.03984.x
    1. Cho EA, Yoon JH, Kim HK, Kang HC. A case of masked toxic adenoma in a patient with non-thyroidal illness. BMC Endocr Disord (2014) 14:1.10.1186/1472-6823-14-1
    1. Dietrich JW, Landgrafe G, Fotiadou EH. TSH and thyrotropic agonists: key actors in thyroid homeostasis. J Thyroid Res (2012) 2012:351864.10.1155/2012/351864
    1. Wiersinga WM. Paradigm shifts in thyroid hormone replacement therapies for hypothyroidism. Nat Rev Endocrinol (2014) 10(3):164–74.10.1038/nrendo.2013.258
    1. Abdalla SM, Bianco AC. Defending plasma T3 is a biological priority. Clin Endocrinol (Oxf) (2014) 81(5):633–41.10.1111/cen.12538
    1. Dayan CM, Panicker V. Hypothyroidism and depression. Eur Thyroid J (2013) 2(3):168–79.10.1159/000353777
    1. Kong WM, Sheikh MH, Lumb PJ, Naoumova RP, Freedman DB, Crook M, et al. A 6-month randomized trial of thyroxine treatment in women with mild subclinical hypothyroidism. Am J Med (2002) 112(5):348–54.10.1016/S0002-9343(02)01022-7
    1. Quinque EM, Villringer A, Kratzsch J, Karger S. Patient-reported outcomes in adequately treated hypothyroidism – insights from the German versions of ThyDQoL, ThySRQ and ThyTSQ. Health Qual Life Outcomes (2013) 11:68.10.1186/1477-7525-11-68
    1. McAninch EA, Bianco AC. New insights into the variable effectiveness of levothyroxine monotherapy for hypothyroidism. Lancet Diabetes Endocrinol (2015) 3(10):756–8.10.1016/S2213-8587(15)00325-3
    1. McAninch EA, Bianco AC. The history and future of treatment of hypothyroidism. Ann Intern Med (2016) 164(1):50–6.10.7326/M15-1799
    1. Hoermann R, Midgley JE, Larisch R, Dietrich JW. Homeostatic control of the thyroid-pituitary axis: perspectives for diagnosis and treatment. Front Endocrinol (2015) 6:177.10.3389/fendo.2015.00177
    1. Dietrich JW, Midgley JE, Larisch R, Hoermann R. Of rats and men: thyroid homeostasis in rodents and human beings. Lancet Diabetes Endocrinol (2015) 3(12):932–3.10.1016/S2213-8587(15)00421-0
    1. Hoermann R, Midgley JE, Giacobino A, Eckl WA, Wahl HG, Dietrich JW, et al. Homeostatic equilibria between free thyroid hormones and pituitary thyrotropin are modulated by various influences including age, body mass index and treatment. Clin Endocrinol (Oxf) (2014) 81(6):907–15.10.1111/cen.12527
    1. Hoermann R, Midgley JE, Larisch R, Dietrich JW. Integration of peripheral and glandular regulation of triiodothyronine production by thyrotropin in untreated and thyroxine-treated subjects. Horm Metab Res (2015) 47(9):674–80.10.1055/s-0034-1398616
    1. Andersen S, Pedersen KM, Bruun NH, Laurberg P. Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab (2002) 87(3):1068–72.10.1210/jcem.87.3.8165
    1. Benhadi N, Fliers E, Visser TJ, Reitsma JB, Wiersinga WM. Pilot study on the assessment of the setpoint of the hypothalamus-pituitary-thyroid axis in healthy volunteers. Eur J Endocrinol (2010) 162(2):323–9.10.1530/EJE-09-0655
    1. Goede SL, Leow MK, Smit JW, Dietrich JW. A novel minimal mathematical model of the hypothalamus-pituitary-thyroid axis validated for individualized clinical applications. Math Biosci (2014) 249:1–7.10.1016/j.mbs.2014.01.001
    1. Larisch R, Giacobino A, Eckl W, Wahl HG, Midgley JE, Hoermann R. Reference range for thyrotropin. Post hoc assessment. Nuklearmedizin (2015) 54(3):112–7.10.3413/Nukmed-0671-14-06
    1. Hoermann R, Larisch R, Dietrich JW, Midgley JE. Derivation of a multivariate reference range for pituitary thyrotropin and thyroid hormones: diagnostic efficiency compared to conventional single-reference method. Eur J Endocrinol (2016) 174(6):735–43.10.1530/EJE-16-0031
    1. Goede SL, Leow MK, Smit JW, Klein HH, Dietrich JW. Hypothalamus-pituitary-thyroid feedback control: implications of mathematical modeling and consequences for thyrotropin (TSH) and free thyroxine (FT4) reference ranges. Bull Math Biol (2014) 76(6):1270–87.10.1007/s11538-014-9955-5
    1. Leow MK, Goede SL, Dietrich JW, Inventors; System and Method for Deriving Parameters for Homeostatic Feedback Control of an Individual. Singapore patent 201208940-5 (2014).
    1. Reichlin S, Utiger RD. Regulation of the pituitary-thyroid axis in man: relationship of TSH concentration to concentration of free and total thyroxine in plasma. J Clin Endocrinol Metab (1967) 27(2):251–5.10.1210/jcem-27-2-251
    1. Ben-Shachar R, Eisenberg M, Huang SA, DiStefano JJ, III. Simulation of post-thyroidectomy treatment alternatives for triiodothyronine or thyroxine replacement in pediatric thyroid cancer patients. Thyroid (2012) 22(6):595–603.10.1089/thy.2011.0355
    1. Eisenberg M, Distefano JJ. TSH-based protocol, tablet instability, and absorption effects on L-T4 bioequivalence. Thyroid (2009) 19(2):103–10.10.1089/thy.2008.0148
    1. Eisenberg M, Samuels M, DiStefano JJ, III. L-T4 bioequivalence and hormone replacement studies via feedback control simulations. Thyroid (2006) 16(12):1279–92.10.1089/thy.2006.16.1279
    1. Eisenberg M, Samuels M, DiStefano JJ, III. Extensions, validation, and clinical applications of a feedback control system simulator of the hypothalamo-pituitary-thyroid axis. Thyroid (2008) 18(10):1071–85.10.1089/thy.2007.0388
    1. Eisenberg MC, Santini F, Marsili A, Pinchera A, DiStefano JJ, III. TSH regulation dynamics in central and extreme primary hypothyroidism. Thyroid (2010) 20(11):1215–28.10.1089/thy.2009.0349
    1. Han SX, Eisenberg M, Larsen PR, DiStefano J, III. THYROSIM app for education and research predicts potential health risks of over-the-counter thyroid supplements. Thyroid (2016) 26(4):489–98.10.1089/thy.2015.0373
    1. Dietrich JW. In: Schardt F, editor. Der Hypophysen-Schilddrüsen-Regelkreis. Entwicklung und klinische Anwendung eines nichtlinearen Modells. Berlin: Logos-Verlag; (2002). 188 p.
    1. Dietrich JW, Tesche A, Pickardt CR, Mitzdorf U. Thyrotropic feedback control: evidence for an additional ultrashort feedback loop from fractal analysis. Cybern Syst (2004) 35(4):315–31.10.1080/01969720490443354
    1. DiStefano JJ. A New Model of the Thyroid Hormone Regulator and a Proposal for Its Experimental Validation. Los Angeles: University of California, Los Angeles; (1966).
    1. DiStefano JJ, III, Stear EB. Neuroendocrine control of thyroid secretion in living systems: a feedback control system model. Bull Math Biophys (1968) 30(1):3–26.10.1007/BF02476936
    1. DiStefano JJ., III A model of the normal thyroid hormone glandular secretion mechanism. J Theor Biol (1969) 22(3):412–7.10.1016/0022-5193(69)90013-7
    1. DiStefano JJ, III, Mak PH. On model and data requirements for determining the bioavailability of oral therapeutic agents: application to gut absorption of thyroid hormones. Am J Physiol (1979) 236(3):R137–41.
    1. Dietrich JW, Brisseau K, Boehm BO. Resorption, Transport und Bioverfügbarkeit von Schilddrüsenhormonen [Absorption, transport and bio-availability of iodothyronines]. Dtsch Med Wochenschr (2008) 133(31–32):1644–8.10.1055/s-0028-1082780
    1. Hennessey JV. Levothyroxine dosage and the limitations of current bioequivalence standards. Nat Clin Pract Endocrinol Metab (2006) 2(9):474–5.10.1038/ncpendmet0273
    1. Wartofsky L. Levothyroxine: therapeutic use and regulatory issues related to bioequivalence. Expert Opin Pharmacother (2002) 3(6):727–32.10.1517/14656566.3.6.727
    1. Horn K, Koeppen D, Pickardt CR, Scriba PC. Normalisierung des T3/T4-Quotienten im Serum bei Struma-Patienten unter Kaliumjodid: Ein Beispiel der Autoregulation der Schilddrüse. Klin Wochenschr (1975) 53(2):94–5.10.1007/BF01482716
    1. Amino N, Yabu Y, Miki T, Morimoto S, Kumahara Y, Mori H, et al. Serum ratio of triiodothyronine to thyroxine, and thyroxine-binding globulin and calcitonin concentrations in Graves’ disease and destruction-induced thyrotoxicosis. J Clin Endocrinol Metab (1981) 53(1):113–6.10.1210/jcem-53-1-113
    1. Miyauchi A, Takamura Y, Ito Y, Miya A, Kobayashi K, Matsuzuka F, et al. 3,5,3’-Triiodothyronine thyrotoxicosis due to increased conversion of administered levothyroxine in patients with massive metastatic follicular thyroid carcinoma. J Clin Endocrinol Metab (2008) 93(6):2239–42.10.1210/jc.2007-2282
    1. Takamatsu J, Sugawara M, Kuma K, Kobayashi A, Matsuzuka F, Mozai T, et al. Ratio of serum triiodothyronine to thyroxine and the prognosis of triiodothyronine-predominant Graves’ disease. Ann Intern Med (1984) 100(3):372–5.10.7326/0003-4819-100-3-372
    1. Berger MM, Reymond MJ, Shenkin A, Rey F, Wardle C, Cayeux C, et al. Influence of selenium supplements on the post-traumatic alterations of the thyroid axis: a placebo-controlled trial. Intensive Care Med (2001) 27(1):91–100.10.1007/s001340000757
    1. Laurberg P. Mechanisms governing the relative proportions of thyroxine and 3,5,3’-triiodothyronine in thyroid secretion. Metabolism (1984) 33(4):379–92.10.1016/0026-0495(84)90203-8
    1. Oto Y, Muroya K, Hanakawa J, Asakura Y, Adachi M. The ratio of serum free triiodothyronine to free thyroxine in children: a retrospective database survey of healthy short individuals and patients with severe thyroid hypoplasia or central hypothyroidism. Thyroid Res (2015) 8:10.10.1186/s13044-015-0023-5
    1. Sesmilo G, Simo O, Choque L, Casamitjana R, Puig-Domingo M, Halperin I. Serum free triiodothyronine (T3) to free thyroxine (T4) ratio in treated central hypothyroidism compared with primary hypothyroidism and euthyroidism. Endocrinol Nutr (2011) 58(1):9–15.10.1016/j.endonu.2010.09.006
    1. Heyma P, Larkings RG, Campbell DG. Effects of propranolol on T3 formation from T4: in vitro and in vivo studies. In: Stockigt JR, Nagataki S, Meldrum E, Barlow JW, Harding PE, editors. Thyroid Research VIII. Canberra: Australian Academy of Science; (1980). p. 420–3.
    1. Amino N, Yabu Y, Kuro R, Miyai K, Kumahara Y. T3/T4 ratio in thyroid disease. Lancet (1979) 1(8107):107.10.1016/S0140-6736(79)90100-4
    1. Carle A, Knudsen N, Pedersen IB, Perrild H, Ovesen L, Rasmussen LB, et al. Determinants of serum T4 and T3 at the time of diagnosis in nosological types of thyrotoxicosis: a population-based study. Eur J Endocrinol (2013) 169(5):537–45.10.1530/EJE-13-0533
    1. Mortoglou A, Candiloros H. The serum triiodothyronine to thyroxine (T3/T4) ratio in various thyroid disorders and after levothyroxine replacement therapy. Hormones (2004) 3(2):120–6.10.14310/horm.2002.11120
    1. Yoshimura Noh J, Momotani N, Fukada S, Ito K, Miyauchi A, Amino N. Ratio of serum free triiodothyronine to free thyroxine in Graves’ hyperthyroidism and thyrotoxicosis caused by painless thyroiditis. Endocr J (2005) 52(5):537–42.10.1507/endocrj.52.537
    1. Gullo D, Latina A, Frasca F, Le Moli R, Pellegriti G, Vigneri R. Levothyroxine monotherapy cannot guarantee euthyroidism in all athyreotic patients. PLoS One (2011) 6(8):e22552.10.1371/journal.pone.0022552
    1. Olivieri O, Girelli D, Azzini M, Stanzial AM, Russo C, Ferroni M, et al. Low selenium status in the elderly influences thyroid hormones. Clin Sci (Lond) (1995) 89(6):637–42.10.1042/cs0890637
    1. Wilkin TJ, Isles TE. The behavior of the triiodothyronine/thyroxine (T3/T4) ratio in normal individuals, and its implications for the regulation of euthyroidism. J Endocrinol Invest (1984) 7(4):319–22.10.1007/BF03351009
    1. Dietrich JW, Müller P, Schiedat F, Schlömicher M, Strauch J, Chatzitomaris A, et al. Nonthyroidal illness syndrome in cardiac illness involves elevated concentrations of 3,5-diiodothyronine and correlates with atrial remodeling. Eur Thyroid J (2015) 4(2):129–37.10.1159/000381543
    1. Franz VH. Ratios: A Short Guide to Confidence Limits and Proper Use. (2007). ArXiv: 0710.2024v1 Available at:
    1. Dietrich JW, Mitzdorf U, Weitkunat R, Pickardt CR. The pituitary-thyroid feedback control: stability and oscillations in a new nonlinear model. J Endocrinol Invest (1997) 20:100.
    1. Dietrich JW, Stachon A, Antic B, Klein HH, Hering S. The AQUA-FONTIS study: protocol of a multidisciplinary, cross-sectional and prospective longitudinal study for developing standardized diagnostics and classification of non-thyroidal illness syndrome. BMC Endocr Disord (2008) 8:13.10.1186/1472-6823-8-13
    1. Dietrich JW, Fischer MR, Jauch J, Pantke E, Gärtner R, Pickardt CR. SPINA-THYR: a novel systems theoretic approach to determine the secretion capacity of the thyroid gland. Eur J Intern Med (1999) 10(Suppl 1):S34.
    1. Wang X, Liu H, Chen J, Huang Y, Li L, Rampersad S, et al. Metabolic characteristics in obese patients complicated by mild thyroid hormone deficiency. Horm Metab Res (2016) 48(5):331–7.10.1055/s-0042-105150
    1. Pilo A, Iervasi G, Vitek F, Ferdeghini M, Cazzuola F, Bianchi R. Thyroidal and peripheral production of 3,5,3’-triiodothyronine in humans by multicompartmental analysis. Am J Physiol (1990) 258(4 Pt 1):E715–26.
    1. Dietrich JW. SimThyr. 4.0 ed Fairfax, VA: SourceForge; (1994-2016). RRID:SCR_014351.
    1. Clerico A, Ripoli A, Zucchelli GC, Plebani M. Harmonization protocols for thyroid stimulating hormone (TSH) immunoassays: different approaches based on the consensus mean value. Clin Chem Lab Med (2015) 53(3):377–82.10.1515/cclm-2014-0586
    1. Spencer CA, Takeuchi M, Kazarosyan M. Current status and performance goals for serum thyrotropin (TSH) assays. Clin Chem (1996) 42(1):140–5.
    1. Shechtman O. The coefficient of variation as an index of measurement reliability. In: Doi SAR, Williams GM, editors. Methods of Clinical Epidemiology. Springer Series on Epidemiology and Public Health. Berlin; Heidelberg: Springer; (2013). p. 39–49.
    1. Rosolowska-Huszcz D, Kozlowska L, Rydzewski A. Influence of low protein diet on nonthyroidal illness syndrome in chronic renal failure. Endocrine (2005) 27(3):283–8.10.1385/ENDO:27:3:283
    1. Fan S, Ni X, Wang J, Zhang Y, Tao S, Chen M, et al. Low triiodothyronine syndrome in patients with radiation enteritis: risk factors and clinical outcomes an observational study. Medicine (Baltimore) (2016) 95(6):e2640.10.1097/MD.0000000000002640
    1. Han G, Ren J, Liu S, Gu G, Ren H, Yan D, et al. Nonthyroidal illness syndrome in enterocutaneous fistulas. Am J Surg (2013) 206(3):386–92.10.1016/j.amjsurg.2012.12.011
    1. Liu S, Ren J, Zhao Y, Han G, Hong Z, Yan D, et al. Nonthyroidal illness syndrome: is it far away from Crohn’s disease? J Clin Gastroenterol (2012) 47(2):153–9.10.1097/MCG.0b013e318254ea8a
    1. Hoermann R, Midgley JE, Larisch R, Dietrich JW. Is pituitary TSH an adequate measure of thyroid hormone-controlled homoeostasis during thyroxine treatment? Eur J Endocrinol (2013) 168(2):271–80.10.1530/EJE-12-0819
    1. Midgley JE, Larisch R, Dietrich JW, Hoermann R. Variation in the biochemical response to l-thyroxine therapy and relationship with peripheral thyroid hormone conversion efficiency. Endocr Connect (2015) 4(4):196–205.10.1530/EC-150056
    1. Jostel A, Ryder WD, Shalet SM. The use of thyroid function tests in the diagnosis of hypopituitarism: definition and evaluation of the TSH Index. Clin Endocrinol (Oxf) (2009) 71(4):529–34.10.1111/j.1365-2265.2009.03534.x
    1. Pohlenz J, Weiss RE, Macchia PE, Pannain S, Lau IT, Ho H, et al. Five new families with resistance to thyroid hormone not caused by mutations in the thyroid hormone receptor beta gene. J Clin Endocrinol Metab (1999) 84(11):3919–28.10.1210/jc.84.11.3919
    1. Chatzitomaris A, Köditz R, Hoeppner W, Peters S, Klein HH, Dietrich JW. A novel de novo mutation in the thyroid hormone receptor-beta gene. Exp Clin Endocrinol Diabetes (2015) 123:P01_03.10.1055/s-0035-1547617
    1. Panicker V, Wilson SG, Spector TD, Brown SJ, Falchi M, Richards JB, et al. Heritability of serum TSH, free T4 and free T3 concentrations: a study of a large UK twin cohort. Clin Endocrinol (Oxf) (2008) 68(4):652–9.10.1111/j.1365-2265.2007.03079.x
    1. Jansen SW, Akintola AA, Roelfsema F, van der Spoel E, Cobbaert CM, Ballieux BE, et al. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism. Sci Rep (2015) 5:11525.10.1038/srep11525
    1. Midgley JE, Hoermann R, Larisch R, Dietrich JW. Physiological states and functional relation between thyrotropin and free thyroxine in thyroid health and disease: in vivo and in silico data suggest a hierarchical model. J Clin Pathol (2013) 66(4):335–42.10.1136/jclinpath-2012-201213
    1. Dietrich JW. [Thyroid storm]. Med Klin Intensivmed Notfmed (2012) 107(6):448–53.10.1007/s00063-012-0113-2
    1. Rohrer S, Dietrich JW. Das Refeeding-Syndrom – Eine Literaturübersicht [Refeeding syndrome: a review of the literature]. Z Gastroenterol (2014) 52(6):593–600.10.1055/s-0034-1366430

Source: PubMed

3
Abonnieren