Placebo-controlled randomized clinical trial of fish oil's impact on fatigue, quality of life, and disease activity in Systemic Lupus Erythematosus

Cristina Arriens, Linda S Hynan, Robert H Lerman, David R Karp, Chandra Mohan, Cristina Arriens, Linda S Hynan, Robert H Lerman, David R Karp, Chandra Mohan

Abstract

Introduction: A recent metabolomic screen of sera from patients with Systemic Lupus Erythematosus (SLE) found reduction of antioxidants and substrates for energy generation. These metabolic alterations may underlie one of the most common features of SLE--fatigue. The metabolomic studies also noted reduced omega-3 fatty acids, which are powerful anti- oxidants. This deficiency may be causally related to oxidative stress, inflammation, disease activity, and fatigue in SLE. Supplementation of omega-3 fatty acids using fish oil in SLE has been shown to reduce oxidative stress in other studies. The objective of this study is to evaluate the effect of fish oil supplementation on clinical measures of fatigue, quality of life, and disease activity as part of a randomized clinical trial.

Methods: Fifty SLE patients recruited in outpatient clinics were randomized 1:1 to fish oil supplementation or olive oil placebo, and blinded to their treatment group. At baseline and after 6 months of treatment, RAND Short Form-36 (RAND SF-36), Fatigue Severity Scale (FSS), SLE Disease Activity Index (SLEDAI), and Physician Global Assessment (PGA) were completed; serum was also collected for soluble mediator analysis.

Results: Thirty-two patients completed the study. PGA improved significantly in the fish oil group compared with the placebo group (p = 0.015). The RAND SF-36 Energy/fatigue and Emotional well-being scores demonstrated improvement trends (p = 0.092 and 0.070). No clear difference was seen in FSS and SLEDAI (p = 0.350 and p = 0.417). Erythrocyte sedimentation rate and serum IL-12 were reduced (p = 0.008 and p = 0.058); while serum IL-13 was increased by fish oil supplementation (p = 0.033).

Conclusions: In this randomized, placebo-controlled 6-month trial, SLE patients randomized to fish oil supplementation demonstrated improvement in their PGA, RAND SF-36, and some circulating inflammatory markers.

Trial registration: ClinicalTrials.gov Identifier: NCT02021513 (registered 13 December 2013).

Figures

Fig. 1
Fig. 1
Trial Profile. Flow diagram of progress through phases of the randomized clinical trial
Fig. 2
Fig. 2
Quality of Life Assessments. RAND Short Form-36 (SF-36) Dot plot of score changes from baseline to six months for a Energy/fatigue (p = 0.092) and b Emotional Well- Being (p = 0.070), a higher score is indicative of better quality of life or fatigue; therefore a positive delta denotes improvement. Fatigue Severity Scale c Dot plot of score changes from baseline to six months (p = 0.350), a lower score indicates less fatigue; therefore a negative delta denotes improvement. For all graphs, center bar represents median and upper and lower bars are the 25th and 75th percentiles. Data were analyzed with Mann–Whitney U tests
Fig. 3
Fig. 3
Quality of Life Assessments. RAND Short Form-36 (SF-36) Radial representation of the means of the 8 subscales as assessed at baseline (solid line) and six months (dotted line). a Placebo completers (N = 14) & b Fish Oil completers (N = 18)
Fig. 4
Fig. 4
Disease Activity Assessments. Physician’s Global Assessment a Dot plot of score changes (p = 0.015), a higher score is indicative of worse overall disease activity; therefore a negative delta denotes improvement. SELENA-SLEDAI b Dot plot of change scores (p = 0.42) and c Renal component delta for LN patients only, Placebo N = 10 and Fish Oil N = 14, (p = 0.35), a higher score is indicative of higher disease activity; therefore a negative delta denotes improvement. For all graphs, center bar represents median and upper and lower bars are the 25th and 75th percentiles. Data were analyzed with Mann–Whitney U tests
Fig. 5
Fig. 5
Biomarkers. a Erythrocyte Sedimentation Rate (ESR) (p = 0.008), reduced in fish oil group b IL-13 (p = 0.033) elevated in fish oil group c IL-12 (p = 0.058), reduced in fish oil group. For all graphs, center bar represents median and upper and lower bars are the 25th and 75th percentiles. Data were analyzed with Mann–Whitney U tests

References

    1. Lim SS, Bayakly AR, Helmick CG, Gordon C, Easley KA, Drenkard C. The incidence and prevalence of systemic lupus erythematosus, 2002–2004: the georgia lupus registry. Arthritis Rheumatol. 2014;66(2):357–68. doi: 10.1002/art.38239.
    1. Somers EC, Marder W, Cagnoli P, Lewis EE, Deguire P, Gordon C, et al. Population-based incidence and prevalence of systemic lupus erythematosus: the michigan lupus epidemiology and surveillance program. Arthritis Rheumatol. 2014;66(2):369–78.
    1. Arriens C, Mohan C. Systemic lupus erythematosus diagnostics in the ‘omics’ era. Int J Clin Rheumtol. 2013;8(6):671–87. doi: 10.2217/ijr.13.59.
    1. Wu T, Xie C, Han J, Ye Y, Weiel J, Li Q, et al. Metabolic disturbances associated with systemic lupus erythematosus. PLoS One. 2012;7(6), e37210.
    1. Aghdassi E, Ma DW, Morrison S, Hillyer LM, Clarke S, Gladman DD, et al. Alterations in circulating fatty acid composition in patients with systemic lupus erythematosus: a pilot study. JPEN J Parenter Enteral Nutr. 2011;35(2):198–208.
    1. Elkan AC, Anania C, Gustafsson T, Jogestrand T, Hafstrom I, Frostegard J. Diet and fatty acid pattern among patients with SLE: associations with disease activity, blood lipids and atherosclerosis. Lupus. 2012;21(13):1405–11. doi: 10.1177/0961203312458471.
    1. Bello KJ, Fang H, Fazeli P, Bolad W, Corretti M, Magder LS, et al. Omega-3 in SLE: a double- blind, placebo-controlled randomized clinical trial of endothelial dysfunction and disease activity in systemic lupus erythematosus. Rheumatol Int. 2013;33(11):2789–96.
    1. Wright SA, O’Prey FM, McHenry MT, Leahey WJ, Devine AB, Duffy EM, et al. A randomised interventional trial of omega-3-polyunsaturated fatty acids on endothelial function and disease activity in systemic lupus erythematosus. Ann Rheum Dis. 2008;67(6):841–8.
    1. Nakamura N, Kumasaka R, Osawa H, Yamabe H, Shirato K, Fujita T, et al. Effects of eicosapentaenoic acids on oxidative stress and plasma fatty acid composition in patients with lupus nephritis. In Vivo. 2005;19(5):879–82.
    1. Groeger AL, Cipollina C, Cole MP, Woodcock SR, Bonacci G, Rudolph TK, et al. Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat Chem Biol. 2010;6(6):433–41.
    1. Duffy EM, Meenagh GK, McMillan SA, Strain JJ, Hannigan BM, Bell AL. The clinical effect of dietary supplementation with omega-3 fish oils and/or copper in systemic lupus erythematosus. J Rheumatol. 2004;31(8):1551–6.
    1. Clark WF, Parbtani A, Naylor CD, Levinton CM, Muirhead N, Spanner E, et al. Fish oil in lupus nephritis: clinical findings and methodological implications. Kidney Int. 1993;44(1):75–86.
    1. Walton AJ, Snaith ML, Locniskar M, Cumberland AG, Morrow WJ, Isenberg DA. Dietary fish oil and the severity of symptoms in patients with systemic lupus erythematosus. Ann Rheum Dis. 1991;50(7):463–6. doi: 10.1136/ard.50.7.463.
    1. Clark WF, Parbtani A, Huff MW, Reid B, Holub BJ, Falardeau P. Omega-3 fatty acid dietary supplementation in systemic lupus erythematosus. Kidney Int. 1989;36(4):653–60. doi: 10.1038/ki.1989.242.
    1. Zonana-Nacach A, Roseman JM, McGwin Jr G, Friedman AW, Baethge BA, Reveille JD, et al. Systemic lupus erythematosus in three ethnic groups. VI: Factors associated with fatigue within 5 years of criteria diagnosis. LUMINA Study Group. LUpus in MInority populations: NAture vs Nurture. Lupus. 2000;9(2):101–9.
    1. Wang B, Gladman DD, Urowitz MB. Fatigue in lupus is not correlated with disease activity. J Rheumatol. 1998;25(5):892–5.
    1. Rondanelli M, Giacosa A, Opizzi A, Pelucchi C, La Vecchia C, Montorfano G, Negroni M, Berra B, Politi P, Rizzo AM. Long chain omega 3 polyunsaturated fatty acids supplementation in the treatment of elderly depression: effects on depressive symptoms, on phospholipids fatty acids profile and on health-related quality of life. J Nutr Health Aging. 2011;15(1):37–44. doi: 10.1007/s12603-011-0011-y.
    1. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725. doi: 10.1002/art.1780400928.
    1. Miller 3rd ER, Juraschek SP, Appel LJ, Madala M, Anderson CA, Bleys J, et al. The effect of n-3 long-chain polyunsaturated fatty acid supplementation on urine protein excretion and kidney function: meta-analysis of clinical trials. Am J Clin Nutr. 2009;89(6):1937–45.
    1. Gans KM, Sundaram SG, Mcphillips JB, Hixson ML, Linnan L, Carleton RA. Rate Your Plate - an Eating Pattern Assessment and Educational-Tool Used at Cholesterol Screening and Education- Programs. J Nutr Educ. 1993;25(1):29–36. doi: 10.1016/S0022-3182(12)80186-5.
    1. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992;35(6):630–40. doi: 10.1002/art.1780350606.
    1. Petri M, Buyon J, Kim M. Classification and definition of major flares in SLE clinical trials. Lupus. 1999;8(8):685–91. doi: 10.1191/096120399680411281.
    1. Buyon JP, Petri MA, Kim MY, Kalunian KC, Grossman J, Hahn BH, et al. The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: a randomized trial. Ann Intern Med. 2005;142(12 Pt 1):953–62.
    1. Hays RD. The Medical Outcomes Study (MOS) Measures of Quality of Life. Retrieved October 3, 2010 from the RAND Corporation website: . 1994.
    1. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–3. doi: 10.1001/archneur.1989.00520460115022.
    1. Ad Hoc Committee on Systemic Lupus Erythematosus Response Criteria for Fatigue. Measurement of fatigue in systemic lupus erythematosus: a systematic review. Arthritis Rheum. 2007;57(8):1348–57.
    1. Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, et al. Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS One. 2014;9(5), e96905.
    1. Olenik A, Mahillo-Fernandez I, Alejandre-Alba N, Fernandez-Sanz G, Perez MA, Luxan S, et al. Benefits of omega-3 fatty acid dietary supplementation on health-related quality of life in patients with meibomian gland dysfunction. Clin Ophthalmol. 2014;8:831–6.
    1. Yadav V, Bever Jr C, Bowen J, Bowling A, Weinstock-Guttman B, Cameron M, et al. Summary of evidence-based guideline: complementary and alternative medicine in multiple sclerosis: report of the guideline development subcommittee of the American Academy of Neurology. Neurology. 2014;82(12):1083–92.
    1. Halade GV, Williams PJ, Veigas JM, Barnes JL, Fernandes G. Concentrated fish oil (Lovaza (R)) extends lifespan and attenuates kidney disease in lupus-prone short-lived (NZBxNZW) F1 mice. Exp Biol Med. 2013;238(6):610–22. doi: 10.1177/1535370213489485.
    1. Halade GV, Rahman MM, Bhattacharya A, Barnes JL, Chandrasekar B, Fernandes G. Docosahexaenoic acid-enriched fish oil attenuates kidney disease and prolongs median and maximal life span of autoimmune lupus-prone mice. J Immunol. 2010;184(9):5280–6. doi: 10.4049/jimmunol.0903282.
    1. Spurney RF, Ruiz P, Albrightson CR, Pisetsky DS, Coffman TM. Fish oil feeding modulates leukotriene production in murine lupus nephritis. Prostaglandins. 1994;48(5):331–48. doi: 10.1016/0090-6980(94)90032-9.
    1. Kim YJ, Yokozawa T, Chung HY. Effects of energy restriction and fish oil supplementation on renal guanidino levels and antioxidant defences in aged lupus-prone B/W mice. Br J Nutr. 2005;93(6):835–44. doi: 10.1079/BJN20051440.
    1. Hassan KS, Hassan SK, Hijazi EG, Khazim KO. Effects of omega-3 on lipid profile and inflammation markers in peritoneal dialysis patients. Ren Fail. 2010;32(9):1031–5. doi: 10.3109/0886022X.2010.510231.
    1. Hosseini SA, Rahim F, Mola K. Omega-3 induced change in clinical parameters of rheumatoid arthritis. J Med Sci. 2009;9(2):93–7. doi: 10.3923/jms.2009.93.97.
    1. Oates JC, Gilkeson GS. Mediators of injury in lupus nephritis. Curr Opin Rheumatol. 2002;14(5):498–503. doi: 10.1097/00002281-200209000-00003.
    1. Wood LG, Hazlewood LC, Foster PS, Hansbro PM. Lyprinol reduces inflammation and improves lung function in a mouse model of allergic airways disease. Clin Exp Allergy. 2010;40(12):1785–93. doi: 10.1111/j.1365-2222.2010.03503.x.
    1. Yin H, Liu W, Goleniewska K, Porter NA, Morrow JD, Peebles RS., Jr Dietary supplementation of omega-3 fatty acid-containing fish oil suppresses F2-isoprostanes but enhances inflammatory cytokine response in a mouse model of ovalbumin-induced allergic lung inflammation. Free Radic Biol Med. 2009;47(5):622–8. doi: 10.1016/j.freeradbiomed.2009.05.033.
    1. Fritsche KL, Anderson M, Feng C. Consumption of eicosapentaenoic acid and docosahexaenoic acid impair murine interleukin-12 and interferon-gamma production in vivo. J Infect Dis. 2000;182(Suppl 1):S54–61. doi: 10.1086/315925.
    1. Cruz-Chamorro L, Puertollano E, de Cienfuegos GA, Puertollano MA, de Pablo MA. Acquired resistance to Listeria monocytogenes during a secondary infection in a murine model fed dietary lipids. Nutrition. 2011;27(10):1053–60. doi: 10.1016/j.nut.2010.11.011.
    1. Unnebrink K, Windeler J. Intention-to-treat: methods for dealing with missing values in clinical trials of progressively deteriorating diseases. Stat Med. 2001;20(24):3931–46. doi: 10.1002/sim.1149.
    1. Armijo-Olivo S, Warren S, Magee D. Intention to treat analysis, compliance, drop-outs and how to deal with missing data in clinical research: a review. Phys Ther Rev. 2009;14(1):36–49. doi: 10.1179/174328809X405928.

Source: PubMed

3
Abonnieren