Catestatin in Acutely Decompensated Heart Failure Patients: Insights from the CATSTAT-HF Study

Josip A Borovac, Duska Glavas, Zora Susilovic Grabovac, Daniela Supe Domic, Domenico D'Amario, Josko Bozic, Josip A Borovac, Duska Glavas, Zora Susilovic Grabovac, Daniela Supe Domic, Domenico D'Amario, Josko Bozic

Abstract

The role of catestatin (CST) in acutely decompensated heart failure (ADHF) and myocardial infarction (MI) is poorly elucidated. Due to the implicated role of CST in the regulation of neurohumoral activity, the goals of the study were to determine CST serum levels among ninety consecutively enrolled ADHF patients, with respect to the MI history and left ventricular ejection fraction (LVEF) and to examine its association with clinical, echocardiographic, and laboratory parameters. CST levels were higher among ADHF patients with MI history, compared to those without (8.94 ± 6.39 vs. 4.90 ± 2.74 ng/mL, p = 0.001). CST serum levels did not differ among patients with reduced, midrange, and preserved LVEF (7.74 ± 5.64 vs. 5.75 ± 4.19 vs. 5.35 ± 2.77 ng/mL, p = 0.143, respectively). In the multivariable linear regression analysis, CST independently correlated with the NYHA class (β = 0.491, p < 0.001), waist-to-hip ratio (WHR) (β = -0.237, p = 0.026), HbA1c (β = -0.235, p = 0.027), LDL (β = -0.231, p = 0.029), non-HDL cholesterol (β = -0.237, p = 0.026), hs-cTnI (β = -0.221, p = 0.030), and the admission and resting heart rate (β = -0.201, p = 0.036 and β = -0.242, p = 0.030), and was in positive association with most echocardiographic parameters. In conclusion, CST levels were increased in ADHF patients with MI and were overall associated with a favorable cardiometabolic profile but at the same time reflected advanced symptomatic burden (CATSTAT-HF ClinicalTrials.gov number, NCT03389386).

Keywords: NT-proBNP; NYHA functional class; acute myocardial infarction; biomarkers; catestatin; coronary artery disease; heart failure; heart failure decompensation; left ventricular ejection fraction; troponin.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the CATSTAT-HF study.
Figure 2
Figure 2
Catestatin (CST) serum levels in acutely decompensated heart failure patients stratified by the previous history of acute myocardial infarction.
Figure 3
Figure 3
CST serum levels according to the left ventricular ejection fraction, stratified into three groups—heart failure with reduced ejection fraction (HFrEF), heart failure with midrange ejection fraction (HFmrEF), and heart failure with preserved ejection fraction (HFpEF).
Figure 4
Figure 4
The distribution of left ventricular (LV) geometries as estimated by the relative wall thickness.

References

    1. Kurmani S., Squire I. Acute heart failure: Definition, classification and epidemiology. Curr. Heart Fail. Rep. 2017;14:385–392. doi: 10.1007/s11897-017-0351-y.
    1. Roger V.L. Epidemiology of heart failure. Circ. Res. 2013;113:646–659. doi: 10.1161/CIRCRESAHA.113.300268.
    1. Savarese G., Lund L.H. Global public health burden of heart failure. Card. Fail. Rev. 2017;3:7–11. doi: 10.15420/cfr.2016:25:2.
    1. Ibrahim N.E., Januzzi J.L. Established and emerging roles of biomarkers in heart failure. Circ. Res. 2018;123:614–629. doi: 10.1161/CIRCRESAHA.118.312706.
    1. Viquerat C.E., Daly P., Swedberg K., Evers C., Curran D., Parmley W.W., Chatterjee K. Endogenous catecholamine levels in chronic heart failure. Relation to the severity of hemodynamic abnormalities. Am. J. Med. 1985;78:455–460. doi: 10.1016/0002-9343(85)90338-9.
    1. Deng M.C., Brisse B., Erren M., Khurana C., Breithardt G., Scheld H.H. Ischemic versus idiopathic cardiomyopathy: Differing neurohumoral profiles despite comparable peak oxygen uptake. Int. J. Cardiol. 1997;61:261–268. doi: 10.1016/S0167-5273(97)00163-0.
    1. Notarius C.F., Spaak J., Morris B.L., Floras J.S. Comparison of muscle sympathetic activity in ischemic and nonischemic heart failure. J. Card. Fail. 2007;13:470–475. doi: 10.1016/j.cardfail.2007.03.014.
    1. Fung M.M., Salem R.M., Mehtani P., Thomas B., Lu C.F., Perez B., Rao F., Stridsberg M., Ziegler M.G., Mahata S.K., et al. Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin. Exp. Hypertens. 2010;32:278–287. doi: 10.3109/10641960903265246.
    1. Mahata S.K., O’Connor D.T., Mahata M., Yoo S.H., Taupenot L., Wu H., Gill B.M., Parmer R.J. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J. Clin. Invest. 1997;100:1623–1633. doi: 10.1172/JCI119686.
    1. Mahata S.K., Kiranmayi M., Mahapatra N.R. Catestatin: A Master regulator of cardiovascular functions. Curr. Med. Chem. 2018;25:1352–1374. doi: 10.2174/0929867324666170425100416.
    1. Borovac J.A., Dogas Z., Supe-Domic D., Galic T., Bozic J. Catestatin serum levels are increased in male patients with obstructive sleep apnea. Sleep Breath. 2019;23:473–481. doi: 10.1007/s11325-018-1703-x.
    1. Gaede A.H., Pilowsky P.M. Catestatin, a chromogranin A-derived peptide, is sympathoinhibitory and attenuates sympathetic barosensitivity and the chemoreflex in rat CVLM. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012;302:R365–R372. doi: 10.1152/ajpregu.00409.2011.
    1. Wang X., Xu S., Liang Y., Zhu D., Mi L., Wang G., Gao W. Dramatic changes in catestatin are associated with hemodynamics in acute myocardial infarction. Biomarkers. 2011;16:372–377. doi: 10.3109/1354750X.2011.578260.
    1. Peng F., Chu S., Ding W., Liu L., Zhao J., Cui X., Li R., Wang J. The predictive value of plasma catestatin for all-cause and cardiac deaths in chronic heart failure patients. Peptides. 2016;86:112–117. doi: 10.1016/j.peptides.2016.10.007.
    1. Ottesen A.H., Carlson C.R., Louch W.E., Dahl M.B., Sandbu R.A., Johansen R.F., Jarstadmarken H., Bjoras M., Hoiseth A.D., Brynildsen J., et al. Glycosylated chromogranin A in heart failure: Implications for processing and cardiomyocyte calcium homeostasis. Circ. Heart Fail. 2017;10:e003675. doi: 10.1161/CIRCHEARTFAILURE.116.003675.
    1. Meng L., Wang J., Ding W.H., Han P., Yang Y., Qi L.T., Zhang B.W. Plasma catestatin level in patients with acute myocardial infarction and its correlation with ventricular remodelling. Postgrad. Med. J. 2013;89:193–196. doi: 10.1136/postgradmedj-2012-131060.
    1. Liu L., Ding W., Li R., Ye X., Zhao J., Jiang J., Meng L., Wang J., Chu S., Han X., et al. Plasma levels and diagnostic value of catestatin in patients with heart failure. Peptides. 2013;46:20–25. doi: 10.1016/j.peptides.2013.05.003.
    1. Zhu D., Wang F., Yu H., Mi L., Gao W. Catestatin is useful in detecting patients with stage B heart failure. Biomarkers. 2011;16:691–697. doi: 10.3109/1354750X.2011.629058.
    1. McKee P.A., Castelli W.P., McNamara P.M., Kannel W.B. The natural history of congestive heart failure: The Framingham study. N. Engl. J. Med. 1971;285:1441–1446. doi: 10.1056/NEJM197112232852601.
    1. Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G., Coats A.J., Falk V., Gonzalez-Juanatey J.R., Harjola V.P., Jankowska E.A., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur. J. Heart Fail. 2016;18:891–975.
    1. Januzzi J.L., van Kimmenade R., Lainchbury J., Bayes-Genis A., Ordonez-Llanos J., Santalo-Bel M., Pinto Y.M., Richards M. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: An international pooled analysis of 1256 patients: The international collaborative of NT-proBNP study. Eur. Heart J. 2006;27:330–337. doi: 10.1093/eurheartj/ehi631.
    1. Januzzi J.L., Jr., Camargo C.A., Anwaruddin S., Baggish A.L., Chen A.A., Krauser D.G., Tung R., Cameron R., Nagurney J.T., Chae C.U., et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am. J. Cardiol. 2005;95:948–954. doi: 10.1016/j.amjcard.2004.12.032.
    1. Januzzi J.L., Chen-Tournoux A.A., Christenson R.H., Doros G., Hollander J.E., Levy P.D., Nagurney J.T., Nowak R.M., Pang P.S., Patel D., et al. N-terminal pro–B-type natriuretic peptide in the emergency department: The ICON-RELOADED study. J. Am. Coll. Cardiol. 2018;71:1191–1200. doi: 10.1016/j.jacc.2018.01.021.
    1. Mosteller R.D. Simplified calculation of body-surface area. N. Engl. J. Med. 1987;317:1098.
    1. Williams B., Mancia G., Spiering W., Agabiti Rosei E., Azizi M., Burnier M., Clement D.L., Coca A., de Simone G., Dominiczak A., et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018;39:3021–3104. doi: 10.1093/eurheartj/ehy339.
    1. Levey A.S., Stevens L.A., Schmid C.H., Zhang Y.L., Castro A.F., 3rd, Feldman H.I., Kusek J.W., Eggers P., Van Lente F., Greene T., et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009;150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
    1. American Diabetes Association (2) Classification and diagnosis of diabetes. Diabetes Care. 2015;38:S8–S16.
    1. Surawicz B., Childers R., Deal Barbara J., Gettes Leonard S. AHA/ACCF/HRS Recommendations for the Standardization and interpretation of the electrocardiogram. Circulation. 2009;119:e235–e240. doi: 10.1161/CIRCULATIONAHA.108.191095.
    1. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2015;16:233–270. doi: 10.1093/ehjci/jev014.
    1. Folland E.D., Parisi A.F., Moynihan P.F., Jones D.R., Feldman C.L., Tow D.E. Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. A comparison of cineangiographic and radionuclide techniques. Circulation. 1979;60:760–766. doi: 10.1161/01.CIR.60.4.760.
    1. Remme W.J. The sympathetic nervous system and ischaemic heart disease. Eur. Heart J. 1998;19:F62–F71.
    1. Liu L., Ding W., Zhao F., Shi L., Pang Y., Tang C. Plasma levels and potential roles of catestatin in patients with coronary heart disease. Scand. Cardiovasc. J. 2013;47:217–224. doi: 10.3109/14017431.2013.794951.
    1. Taupenot L., Harper K.L., O’Connor D.T. The chromogranin-secretogranin family. N. Engl. J. Med. 2003;348:1134–1149. doi: 10.1056/NEJMra021405.
    1. Helle K.B. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: Comparative and functional aspects. Biol. Rev. Camb. Philos. Soc. 2004;79:769–794. doi: 10.1017/S146479310400644X.
    1. Gayen J.R., Gu Y., O’Connor D.T., Mahata S.K. Global disturbances in autonomic function yield cardiovascular instability and hypertension in the chromogranin a null mouse. Endocrinology. 2009;150:5027–5035. doi: 10.1210/en.2009-0429.
    1. Pascual-Figal D.A., Manzano-Fernandez S., Boronat M., Casas T., Garrido I.P., Bonaque J.C., Pastor-Perez F., Valdes M., Januzzi J.L. Soluble ST2, high-sensitivity troponin T-and N-terminal pro-B-type natriuretic peptide: Complementary role for risk stratification in acutely decompensated heart failure. Eur. J. Heart Fail. 2011;13:718–725. doi: 10.1093/eurjhf/hfr047.
    1. Aimo A., Januzzi J.L., Jr., Vergaro G., Ripoli A., Latini R., Masson S., Magnoli M., Anand I.S., Cohn J.N., Tavazzi L., et al. High-sensitivity troponin T, NT-proBNP and glomerular filtration rate: A multimarker strategy for risk stratification in chronic heart failure. Int. J. Cardiol. 2019;277:166–172. doi: 10.1016/j.ijcard.2018.10.079.
    1. Ahmed A. A propensity matched study of New York Heart Association class and natural history end points in heart failure. Am. J. Cardiol. 2007;99:549–553. doi: 10.1016/j.amjcard.2006.08.065.
    1. Ahmed A., Aronow W.S., Fleg J.L. Higher New York Heart Association classes and increased mortality and hospitalization in patients with heart failure and preserved left ventricular function. Am. Heart J. 2006;151:444–450. doi: 10.1016/j.ahj.2005.03.066.
    1. Muntwyler J., Abetel G., Gruner C., Follath F. One-year mortality among unselected outpatients with heart failure. Eur. Heart J. 2002;23:1861–1866. doi: 10.1053/euhj.2002.3282.
    1. Wang D., Liu T., Shi S., Li R., Shan Y., Huang Y., Hu D., Huang C. Chronic administration of catestatin improves autonomic function and exerts cardioprotective effects in myocardial infarction rats. J. Cardiovasc. Pharmacol. Ther. 2016;21:526–535. doi: 10.1177/1074248416628676.
    1. Zhu D., Xie H., Wang X., Liang Y., Yu H., Gao W. Correlation of plasma catestatin level and the prognosis of patients with acute myocardial infarction. PLoS ONE. 2015;10:e0122993. doi: 10.1371/journal.pone.0122993.
    1. Meng L., Ye X.J., Ding W.H., Yang Y., Di B.B., Liu L., Huo Y. Plasma catecholamine release-inhibitory peptide catestatin in patients with essential hypertension. J. Cardiovasc. Med. 2011;12:643–647. doi: 10.2459/JCM.0b013e328346c142.
    1. Mahapatra N.R., O’Connor D.T., Vaingankar S.M., Hikim A.P., Mahata M., Ray S., Staite E., Wu H., Gu Y., Dalton N., et al. Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J. Clin. Invest. 2005;115:1942–1952. doi: 10.1172/JCI24354.
    1. Ying W., Mahata S., Bandyopadhyay G.K., Zhou Z., Wollam J., Vu J., Mayoral R., Chi N.W., Webster N.J.G., Corti A., et al. Catestatin inhibits obesity-induced macrophage infiltration and inflammation in the liver and suppresses hepatic glucose production, leading to improved insulin sensitivity. Diabetes. 2018;67:841–848. doi: 10.2337/db17-0788.
    1. Gallo M.P., Femmino S., Antoniotti S., Querio G., Alloatti G., Levi R. Catestatin induces glucose uptake and GLUT4 trafficking in adult rat cardiomyocytes. Biomed. Res. Int. 2018;2018:2086109. doi: 10.1155/2018/2086109.
    1. Simunovic M., Supe-Domic D., Karin Z., Degoricija M., Paradzik M., Bozic J., Unic I., Skrabic V. Serum catestatin concentrations are decreased in obese children and adolescents. Pediatr. Diabetes. 2019 doi: 10.1111/pedi.12825. Epub ahead of print.
    1. Bandyopadhyay G.K., Vu C.U., Gentile S., Lee H., Biswas N., Chi N.W., O’Connor D.T., Mahata S.K. Catestatin (chromogranin A (352–372)) and novel effects on mobilization of fat from adipose tissue through regulation of adrenergic and leptin signaling. J. Biol. Chem. 2012;287:23141–23151. doi: 10.1074/jbc.M111.335877.
    1. Bandyopadhyay G.K., Mahata S.K. Chromogranin A regulation of obesity and peripheral insulin sensitivity. Front. Endocrinol. 2017;8:20. doi: 10.3389/fendo.2017.00020.
    1. Durakoglugil M.E., Ayaz T., Kocaman S.A., Kirbas A., Durakoglugil T., Erdogan T., Cetin M., Sahin O.Z., Cicek Y. The relationship of plasma catestatin concentrations with metabolic and vascular parameters in untreated hypertensive patients: Influence on high-density lipoprotein cholesterol. Anatol. J. Cardiol. 2015;15:577–585. doi: 10.5152/akd.2014.5536.
    1. Kojima M., Ozawa N., Mori Y., Takahashi Y., Watanabe-Kominato K., Shirai R., Watanabe R., Sato K., Matsuyama T.A., Ishibashi-Ueda H., et al. Catestatin prevents macrophage-driven atherosclerosis but not arterial injury-induced neointimal hyperplasia. Thromb. Haemost. 2018;118:182–194. doi: 10.1160/TH17-05-0349.
    1. Chen Y., Wang X., Yang C., Su X., Yang W., Dai Y., Han H., Jiang J., Lu L., Wang H., et al. Decreased circulating catestatin levels are associated with coronary artery disease: The emerging anti-inflammatory role. Atherosclerosis. 2019;281:78–88. doi: 10.1016/j.atherosclerosis.2018.12.025.
    1. Wettersten N., Maisel A. Role of cardiac troponin levels in acute heart failure. Card. Fail. Rev. 2015;1:102–106. doi: 10.15420/cfr.2015.1.2.102.
    1. Januzzi J.L., Jr., Filippatos G., Nieminen M., Gheorghiade M. Troponin elevation in patients with heart failure: On behalf of the third Universal definition of myocardial infarction global task force: Heart failure section. Eur. Heart J. 2012;33:2265–2271. doi: 10.1093/eurheartj/ehs191.
    1. Angelone T., Quintieri A.M., Brar B.K., Limchaiyawat P.T., Tota B., Mahata S.K., Cerra M.C. The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinology. 2008;149:4780–4793. doi: 10.1210/en.2008-0318.
    1. Imbrogno S., Garofalo F., Cerra M.C., Mahata S.K., Tota B. The catecholamine release-inhibitory peptide catestatin (chromogranin A344–363) modulates myocardial function in fish. J. Exp. Biol. 2010;213:3636–3643. doi: 10.1242/jeb.045567.
    1. Mazza R., Gattuso A., Mannarino C., Brar B.K., Barbieri S.F., Tota B., Mahata S.K. Catestatin (chromogranin A344–364) is a novel cardiosuppressive agent: Inhibition of isoproterenol and endothelin signaling in the frog heart. Am. J. Physiol. Heart Circ. Physiol. 2008;295:H113–122. doi: 10.1152/ajpheart.00172.2008.
    1. Dev N.B., Gayen J.R., O’Connor D.T., Mahata S.K. Chromogranin a and the autonomic system: Decomposition of heart rate variability and rescue by its catestatin fragment. Endocrinology. 2010;151:2760–2768. doi: 10.1210/en.2009-1110.

Source: PubMed

3
Abonnieren