Trypanosome SL-RNA detection in blood and cerebrospinal fluid to demonstrate active gambiense human African trypanosomiasis infection

Ipos Ngay Lukusa, Nick Van Reet, Dieudonné Mumba Ngoyi, Erick Mwamba Miaka, Justin Masumu, Pati Patient Pyana, Wilfried Mutombo, Digas Ngolo, Vincent Kobo, Felix Akwaso, Médard Ilunga, Lewis Kaninda, Sylvain Mutanda, Dieudonné Mpoyi Muamba, Olaf Valverde Mordt, Antoine Tarral, Sandra Rembry, Philippe Büscher, Veerle Lejon, Ipos Ngay Lukusa, Nick Van Reet, Dieudonné Mumba Ngoyi, Erick Mwamba Miaka, Justin Masumu, Pati Patient Pyana, Wilfried Mutombo, Digas Ngolo, Vincent Kobo, Felix Akwaso, Médard Ilunga, Lewis Kaninda, Sylvain Mutanda, Dieudonné Mpoyi Muamba, Olaf Valverde Mordt, Antoine Tarral, Sandra Rembry, Philippe Büscher, Veerle Lejon

Abstract

Background: Spliced Leader (SL) trypanosome RNA is detectable only in the presence of live trypanosomes, is abundant and the Trypanozoon subgenus has a unique sequence. As previously shown in blood from Guinean human African trypanosomiasis (HAT) patients, SL-RNA is an accurate target for diagnosis. Detection of SL-RNA in the cerebrospinal fluid (CSF) has never been attempted. In a large group of Congolese gambiense HAT patients, the present study aims i) to confirm the sensitivity of SL-RNA detection in the blood and; ii) to assess the diagnostic performance of SL-RNA compared to trypanosome detection in CSF.

Methodology/principal findings: Blood and CSF from 97 confirmed gambiense HAT patients from the Democratic Republic of Congo were collected using PAXgene blood RNA Tubes. Before RNA extraction, specimens were supplemented with internal extraction control RNA to monitor the extraction, which was performed with a PAXgene Blood RNA Kit. SL-RNA qPCR was carried out with and without reverse transcriptase to monitor DNA contamination. In blood, 92/97 (94.8%) HAT patients tested SL-RNA positive, which was significantly more than combined trypanosome detection in lymph and blood (78/97 positive, 80.4%, p = 0.001). Of 96 CSF RNA specimens, 65 (67.7%) were SL-RNA positive, but there was no significant difference between sensitivity of SL-RNA and trypanosome detection in CSF. The contribution of DNA to the Cq values was negligible. In CSF with normal cell counts, a fraction of SL-RNA might have been lost during extraction as indicated by higher internal extraction control Cq values.

Conclusions/significance: Detection of SL-RNA in blood and CSF allows sensitive demonstration of active gambiense HAT infection, even if trypanosomes remain undetectable in blood or lymph. As this condition often occurs in treatment failures, SL-RNA detection in blood and CSF for early detection of relapses after treatment deserves further investigation.

Trial registration: This study was an integral part of the diagnostic trial "New Diagnostic Tools for Elimination of Sleeping Sickness and Clinical Trials: Early tests of Cure" (DiTECT-HAT-WP4, ClinicalTrials.gov Identifier: NCT03112655).

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Cq values of RT-qPCR SL-RNA…
Fig 1. Cq values of RT-qPCR SL-RNA detection in blood and CSF of gambiense HAT patients.
The results are combined with RT-qPCR for internal extraction control (IEC), according the disease stage (E early, I Intermediate and L late stage), parasitological test result in blood and lymph (P), parasitological test result in CSF (C), and CSF WBC count/μl. + trypanosome presence;—absence of trypanosomes. ND not determined.
Fig 2. Cq values of the internal…
Fig 2. Cq values of the internal extraction control RT-qPCR in CSF in function of the CSF white blood cell count/μl.
Blue dots: trypanosomes in CSF. Red dots: no trypanosomes in CSF.

References

    1. WHO, 2013. Control and surveillance of human African trypanosomiasis: report of a WHO Expert Committee. Geneva: World Health Organization; 2013. 237 p. (WHO technical report series).
    1. Chappuis F, Loutan L, Simarro P, Lejon V, Buscher P. Options for Field Diagnosis of Human African Trypanosomiasis. Clin Microbiol Rev. 2005;18(1):133–46. doi: 10.1128/CMR.18.1.133-146.2005
    1. Büscher P, Deborggraeve S. How can molecular diagnostics contribute to the elimination of human African trypanosomiasis? Expert Rev Mol Diagn. 2015;15(5):607–15. doi: 10.1586/14737159.2015.1027195
    1. Deborggraeve S, Lejon V, Ekangu RA, Mumba Ngoyi D, Pati Pyana P, Ilunga M, et al.. Diagnostic Accuracy of PCR in gambiense Sleeping Sickness Diagnosis, Staging and Post-Treatment Follow-Up: A 2-year Longitudinal Study. PLoS Negl Trop Dis. 2011;5(2):e972. doi: 10.1371/journal.pntd.0000972
    1. Ilboudo H, Camara O, Ravel S, Bucheton B, Lejon V, Camara M, et al.. Trypanosoma brucei gambiense Spliced Leader RNA Is a More Specific Marker for Cure of Human African Trypanosomiasis Than T. b. gambiense DNA. J Infect Dis. 2015;212(12):1996–8. doi: 10.1093/infdis/jiv337
    1. González-Andrade P, Camara M, Ilboudo H, Bucheton B, Jamonneau V, Deborggraeve S. Diagnosis of Trypanosomatid Infections. J Mol Diagn. 2014;16(4):400–4. doi: 10.1016/j.jmoldx.2014.02.006
    1. Nare B, Wring S, Bacchi C, Beaudet B, Bowling T, Brun R, et al.. Discovery of Novel Orally Bioavailable Oxaborole 6-Carboxamides That Demonstrate Cure in a Murine Model of Late-Stage Central Nervous System African Trypanosomiasis. Antimicrob Agents Chemother. 2010;54(10):4379–88. doi: 10.1128/AAC.00498-10
    1. Mesu VKBK, Kalonji WM, Bardonneau C, Mordt OV, Blesson S, Simon F, et al.. Oral fexinidazole for late-stage African Trypanosoma brucei gambiense trypanosomiasis: a pivotal multicentre, randomised, non-inferiority trial. The Lancet. 2018;391(10116):144–54. doi: 10.1016/S0140-6736(17)32758-7
    1. Lindner AK, Lejon V, Chappuis F, Seixas J, Kazumba L, Barrett MP, et al.. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: substantial changes for clinical practice. Lancet Infect Dis. 2020;20(2):e38–46. doi: 10.1016/S1473-3099(19)30612-7
    1. Mumba Ngoyi D, Ali Ekangu R, Mumvemba Kodi MF, Pyana PP, Balharbi F, Decq M, et al.. Performance of Parasitological and Molecular Techniques for the Diagnosis and Surveillance of Gambiense Sleeping Sickness. Ndung’u JM, editor. PLoS Negl Trop Dis. 2014;8(6):e2954. doi: 10.1371/journal.pntd.0002954
    1. Miezan TW, Dje NN, Doua F, Boa F. Trypanosomose humaine africaine en Côte d’ivoire: caractéristiques biologiques après traitement. Bull Soc Pathol Exot. 2002;95(5):362–5
    1. Bisser S, N’Siesi F, Lejon V, Preux P, Van Nieuwenhove S, Miaka Mia Bilenge C, et al.. Equivalence Trial of Melarsoprol and Nifurtimox Monotherapy and Combination Therapy for the Treatment of Second-Stage Trypanosoma brucei gambiense Sleeping Sickness. J Infect Dis. 2007;195(3):322–9. doi: 10.1086/510534
    1. Camara M, Camara O, Ilboudo H, et al.., “Sleeping sickness diagnosis: use of buffy coats improves the sensitivity of the mini anion exchange centrifugation test. Trop Med Int Health 2010: 15(7): 796–9. doi: 10.1111/j.1365-3156.2010.02546.x
    1. Büscher P, Mumba Ngoyi D, Kaboré J et al.. Improved Models of Mini Anion Exchange Centrifugation Technique (mAECT) and Modified Single Centrifugation (MSC) for Sleeping Sickness Diagnosis and Staging. PLoS Negl Trop Dis. 2009; 3(11): e471. doi: 10.1371/journal.pntd.0000471
    1. Laurell H, Iacovoni JS, Abot A, Svec D, Maoret J-J. Correction of RT–qPCR data for genomic DNA-derived signals with ValidPrime. Nucleic Acids Res. 2012;40(7):10. doi: 10.1093/nar/gkr1259
    1. Fadda A, Ryten M, Droll D et al.. Transcriptome-wide analysis of trypanosome mRNA decay reveals complex degradation kinetics and suggests a role for co-transcriptional degradation in determining mRNA levels: Transcriptome-wide mRNA decay in trypanosomes. Mol Microbiol. 2014; 94(2): 307–26. doi: 10.1111/mmi.12764
    1. Blum J, Schmid C, Burri C. Clinical aspects of 2541 patients with second stage human African trypanosomiasis. Acta Trop. 2006;97(1):55–64. doi: 10.1016/j.actatropica.2005.08.001
    1. Capewell P, Cren-Travaillé C, Marchesi F, Johnston P, Clucas C, Benson RA, et al.. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. eLife. 2016;5:e17716. doi: 10.7554/eLife.17716
    1. Camara M, Soumah AM, Ilboudo H, Travaillé C, Clucas C, Cooper A, et al.. Extravascular Dermal Trypanosomes in Suspected and Confirmed Cases of gambiense Human African Trypanosomiasis. Clin Infect Dis. 2020; doi: 10.1093/cid/ciaa897
    1. Pentreath VW, Owolabi AO, Doua F. Survival of Trypanosoma brucei brucei in cerebrospinal fluid. Ann Trop Med Parasitol. 1992;86(1):29–34. doi: 10.1080/00034983.1992.11812627
    1. Truc P, Jamonneau V, Cuny G. Use of polymerase chain reaction in human African trypanosomiasis stage determination and follow-up. Bull World Health Organ. 1999;77(9):745–8.
    1. Kyambadde JW, Enyaru JCK, Matovu E, Odiit M, Carasco JF. Detection of trypanosomes in suspected sleeping sickness patients in Uganda using the polymerase chain reaction. Bull World Health Organ. 2000;78(1):119–24.
    1. Jamonneau V, Solano P, Garcia A, Lejon V, Dje N, Miezan TW, et al.. Stage determination and therapeutic decision in human African trypanosomiasis: value of polymerase chain reaction and immunoglobulin M quantification on the cerebrospinal fluid of sleeping sickness patients in Cote d’Ivoire. Trop Med Int Health. 2003;8(7):589–94. doi: 10.1046/j.1365-3156.2003.01079.x
    1. Truc P, Lando A, Penchenier L, Vatunga G, Josenando T. Human African trypanosomiasis in Angola: clinical observations, treatment, and use of PCR for stage determination of early stage of the disease. Trans R Soc Trop Med Hyg. 2012;106(1):10–4. doi: 10.1016/j.trstmh.2011.10.002
    1. Frevert U, Movila A, Nikolskaia OV, Raper J, Mackey ZB, Abdulla M, et al.. Early Invasion of Brain Parenchyma by African Trypanosomes. PLoS ONE. 2012;7(8):e43913. doi: 10.1371/journal.pone.0043913
    1. Jamonneau V, Solano P, Koffi M, Denizot M, Cuny G. Apports et limites du diagnostic de la trypanosomiase humaine africaine. Med Sci. 2004;20(10):871–5.
    1. Büscher P, Bart J-M, Boelaert M, Bucheton B, Cecchi G, Chitnis N, et al.. Do Cryptic Reservoirs Threaten Gambiense-Sleeping Sickness Elimination? Trends Parasitol. 2018;34(3):197–207. doi: 10.1016/j.pt.2017.11.008
    1. Eperon G, Balasegaram M, Potet J, Mowbray C, Valverde O, Chappuis F. Treatment options for second-stage gambiense human African trypanosomiasis. Expert Rev Anti Infect Ther. 2014; 12(11): 1407–17. doi: 10.1586/14787210.2014.959496
    1. Chiweshe SM, Steketee PC, Jayaraman S, Paxton E, Neophytou K, Erasmus H, et al.. Parasite specific 7SL-derived small RNA is an effective target for diagnosis of active trypanosomiasis infection. Caljon G, editor. PLoS Negl Trop Dis. 2019;13(2):e0007189. doi: 10.1371/journal.pntd.0007189

Source: PubMed

3
Abonnieren