Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR

B Tian, R J White, T Xia, S Welle, D H Turner, M B Mathews, C A Thornton, B Tian, R J White, T Xia, S Welle, D H Turner, M B Mathews, C A Thornton

Abstract

Myotonic dystrophy is caused by an expanded CTG repeat in the 3' untranslated region of the DM protein kinase (DMPK) gene. The expanded repeat triggers the nuclear retention of mutant DMPK transcripts, but the resulting underexpression of DMPK probably does not fully account for the severe phenotype. One proposed disease mechanism is that nuclear accumulation of expanded CUG repeats may interfere with nuclear function. Here we show by thermal melting and nuclease digestion studies that CUG repeats form highly stable hairpins. Furthermore, CUG repeats bind to the dsRNA-binding domain of PKR, the dsRNA-activated protein kinase. The threshold for binding to PKR is approximately 15 CUG repeats, and the affinity increases with longer repeat lengths. Finally, CUG repeats that are pathologically expanded can activate PKR in vitro. These results raise the possibility that the disease mechanism could be, in part, a gain of function by mutant DMPK transcripts that involves sequestration or activation of dsRNA binding proteins.

References

    1. Mol Cell Biol. 1989 Apr;9(4):1576-86
    1. Ann Neurol. 1990 May;27(5):505-12
    1. Nucleic Acids Res. 1990 Sep 25;18(18):5401-6
    1. Exp Cell Res. 1995 May;218(1):17-27
    1. J Mol Biol. 1995 May 26;249(1):29-44
    1. J Biol Chem. 1995 Sep 1;270(35):20246-9
    1. Science. 1995 Oct 20;270(5235):484-7
    1. Virology. 1996 May 15;219(2):339-49
    1. Nat Genet. 1996 Jul;13(3):316-24
    1. Nat Genet. 1996 Jul;13(3):325-35
    1. Biochemistry. 1996 Aug 6;35(31):9983-94
    1. J Virol. 1996 Aug;70(8):5611-7
    1. Biotechniques. 1996 Oct;21(4):609-10, 612
    1. Nucleic Acids Res. 1996 Nov 15;24(22):4407-14
    1. J Mol Biol. 1996 Nov 22;264(1):82-96
    1. RNA. 1997 Apr;3(4):438-48
    1. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3542-7
    1. EMBO J. 1997 Apr 15;16(8):2140-9
    1. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7388-93
    1. J Biol Chem. 1997 Dec 5;272(49):31079-85
    1. J Biol Chem. 1998 Feb 27;273(9):5204-10
    1. Science. 1998 May 1;280(5364):737-41
    1. Cell Growth Differ. 1999 Mar;10(3):201-12
    1. Nat Genet. 1999 Apr;21(4):379-84
    1. Genome Res. 1999 May;9(5):506-13
    1. J Mol Biol. 1999 May 21;288(5):911-40
    1. J Biol Chem. 1975 Jan 25;250(2):409-17
    1. J Biol Chem. 1975 Apr 25;250(8):3050-6
    1. J Biol Chem. 1979 Oct 25;254(20):10180-3
    1. Prog Clin Biol Res. 1985;202:47-66
    1. Biol Chem Hoppe Seyler. 1988 Sep;369(9):985-95
    1. J Cell Biochem. 1991 May;46(1):9-20
    1. J Virol. 1991 Nov;65(11):5657-62
    1. Mol Cell Biol. 1992 Nov;12(11):5238-48
    1. J Cell Sci. 1993 Sep;106 ( Pt 1):11-22
    1. Ann Neurol. 1994 Jan;35(1):104-7
    1. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6972-6
    1. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9218-22
    1. Biochemistry. 1994 Nov 29;33(47):14289-96
    1. J Biol Chem. 1995 Mar 17;270(11):6298-307
    1. J Cell Biol. 1995 Mar;128(6):995-1002

Source: PubMed

3
Abonnieren