Effect and Safety of Meropenem-Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial

Richard G Wunderink, Evangelos J Giamarellos-Bourboulis, Galia Rahav, Amy J Mathers, Matteo Bassetti, Jose Vazquez, Oliver A Cornely, Joseph Solomkin, Tanaya Bhowmick, Jihad Bishara, George L Daikos, Tim Felton, Maria Jose Lopez Furst, Eun Jeong Kwak, Francesco Menichetti, Ilana Oren, Elizabeth L Alexander, David Griffith, Olga Lomovskaya, Jeffery Loutit, Shu Zhang, Michael N Dudley, Keith S Kaye, Richard G Wunderink, Evangelos J Giamarellos-Bourboulis, Galia Rahav, Amy J Mathers, Matteo Bassetti, Jose Vazquez, Oliver A Cornely, Joseph Solomkin, Tanaya Bhowmick, Jihad Bishara, George L Daikos, Tim Felton, Maria Jose Lopez Furst, Eun Jeong Kwak, Francesco Menichetti, Ilana Oren, Elizabeth L Alexander, David Griffith, Olga Lomovskaya, Jeffery Loutit, Shu Zhang, Michael N Dudley, Keith S Kaye

Abstract

Introduction: Treatment options for carbapenem-resistant Enterobacteriaceae (CRE) infections are limited and CRE infections remain associated with high clinical failure and mortality rates, particularly in vulnerable patient populations. A Phase 3, multinational, open-label, randomized controlled trial (TANGO II) was conducted from 2014 to 2017 to evaluate the efficacy/safety of meropenem-vaborbactam monotherapy versus best available therapy (BAT) for CRE.

Methods: A total of 77 patients with confirmed/suspected CRE infection (bacteremia, hospital-acquired/ventilator-associated bacterial pneumonia, complicated intra-abdominal infection, complicated urinary tract infection/acute pyelonephritis) were randomized, and 47 with confirmed CRE infection formed the primary analysis population (microbiologic-CRE-modified intent-to-treat, mCRE-MITT). Eligible patients were randomized 2:1 to meropenem-vaborbactam (2 g/2 g over 3 h, q8h for 7-14 days) or BAT (mono/combination therapy with polymyxins, carbapenems, aminoglycosides, tigecycline; or ceftazidime-avibactam alone). Efficacy endpoints included clinical cure, Day-28 all-cause mortality, microbiologic cure, and overall success (clinical cure + microbiologic eradication). Safety endpoints included adverse events (AEs) and laboratory findings.

Results: Within the mCRE-MITT population, cure rates were 65.6% (21/32) and 33.3% (5/15) [95% confidence interval (CI) of difference, 3.3% to 61.3%; P = 0.03)] at End of Treatment and 59.4% (19/32) and 26.7% (4/15) (95% CI of difference, 4.6% to 60.8%; P = 0.02) at Test of Cure;.Day-28 all-cause mortality was 15.6% (5/32) and 33.3% (5/15) (95% CI of difference, - 44.7% to 9.3%) for meropenem-vaborbactam versus BAT, respectively. Treatment-related AEs and renal-related AEs were 24.0% (12/50) and 4.0% (2/50) for meropenem-vaborbactam versus 44.0% (11/25) and 24.0% (6/25) for BAT. Exploratory risk-benefit analyses of composite clinical failure or nephrotoxicity favored meropenem-vaborbactam versus BAT (31.3% [10/32] versus 80.0% [12/15]; 95% CI of difference, - 74.6% to - 22.9%; P < 0.001).

Conclusions: Monotherapy with meropenem-vaborbactam for CRE infection was associated with increased clinical cure, decreased mortality, and reduced nephrotoxicity compared with BAT.

Clinical trials registration: NCT02168946.

Funding: The Medicines Company.

Keywords: Best available therapy; Carbapenem-resistant Enterobacteriaceae; Meropenem–vaborbactam; Randomized clinical trial; TANGO II.

Figures

Fig. 1
Fig. 1
Flow of patients in TANGO II. mCRE-MITT microbiologic-carbapenem-resistant Enterobacteriaceae-modified intent-to-treat, MITT modified intent-to-treat, m-MITT microbiologic modified intent-to-treat; M–V meropenem–vaborbactam, VABP ventilator-associated bacterial pneumonia. aBest available therapy included (alone or in combination): a carbapenem, aminoglycoside, polymyxin B, colistin, tigecycline, or (monotherapy only) ceftazidime-avibactam
Fig. 2
Fig. 2
Subgroup analysis. mCRE-MITT microbiologic carbapenem-resistant Enterobacteriaceae modified intent-to-treat, SIRS systemic inflammatory response syndrome

References

    1. Bassetti M, Poulakou G, Ruppe E, Bouza E, Van Hal SJ, Brink A. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach. Intensive Care Med. 2017 doi: 10.1007/s00134-017-4878.
    1. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. . Accessed 27 Aug 2017.
    1. World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. . Accessed 5 Sep 2017.
    1. European Commission. A European One Health action plan against antimicrobial resistance (AMR). . Accessed 5 Sep 2017.
    1. The Pew Charitable Trusts. GAIN: how a new law is stimulating the development of antibiotics. . Accessed 5 Sep 2017.
    1. O’Neill J. Tackling drug-resistant infections globally: an overview of our work. The review on antimicrobial resistance. London: Wellcome Trust; 2016.
    1. Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8(3):159–166. doi: 10.1016/S1473-3099(08)70041-0.
    1. Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13(9):785–796. doi: 10.1016/S1473-3099(13)70190-7.
    1. Giacobbe DR, Del Bono V, Trecarichi EM, et al; ISGRI-SITA (Italian Study Group on Resistant Infections of the Società Italiana Terapia Antinfettiva). Risk factors for bloodstream infections due to colistin-resistant KPC-producing Klebsiella pneumoniae: results from a multicenter case-control-control study. Clin Microbiol Infect. 2015;21(12):1106.e1–1106.e8.
    1. Monaco M, Giani T, Raffone M, et al. Colistin resistance superimposed to endemic carbapenem-resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, November 2013 to April 2014. Euro Surveill. 2014;19(42):14–18. doi: 10.2807/1560-7917.ES2014.19.42.20939.
    1. Shields RK, Chen L, Cheng S, et al Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 2017;61(3):3e02097-16-3e020916.
    1. Alexander EL, Loutit J, Tumbarello M, et al. Carbapenem-resistant Enterobacteriaceae infections: results from a retrospective series and implications for the design of prospective clinical trials. Open Forum Inf Dis. 2017;4(2):ofx063.
    1. Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother. 2014;58(2):654–663. doi: 10.1128/AAC.01222-13.
    1. Tumbarello M, Viale P, Viscoli C, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55(7):943–950. doi: 10.1093/cid/cis588.
    1. Daikos GL, Tsaousi S, Tzouvelekis LS, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014;58(4):2322–2328. doi: 10.1128/AAC.02166-13.
    1. Pouch SM, Satlin MJ. Carbapenem-resistant Enterobacteriaceae in special populations: solid organ transplant recipients, stem cell transplant recipients, and patients with hematologic malignancies. Virulence. 2017;8(4):391–402. doi: 10.1080/21505594.2016.1213472.
    1. Hecker SJ, Reddy KR, Totrov M, et al. Discovery of a cyclic boronic acid beta-lactamase inhibitor (RPX7009) with utility vs. class A serine carbapenemases. J Med Chem. 2015;58(9):3682–3692. doi: 10.1021/acs.jmedchem.5b00127.
    1. Rubino CM, Bhavnani SM, Loutit JS, Morgan EE, White D, Dudley MN, Griffith DC. Phase 1 study of the safety, tolerability, and pharmacokinetics of vaborbactam and meropenem alone and in combination following single and multiple doses in healthy adult subjects. Antimicrob Agents Chemother. 2018 doi: 10.1128/AAC.02228-17.
    1. Kaye KS, Bhowmick T, Metallidis S, et al. Effect of meropenem–vaborbactam vs. piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial. JAMA. 2018;319(8):788–799. doi: 10.1001/jama.2018.0438.
    1. FDA approves new antibacterial drug [press release]. Silver Spring, MD: US Food and Drug Administration; August 29, 2017. . Accessed 3 Sep 2017.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–829. doi: 10.1097/00003246-198510000-00009.
    1. Clinical and Laboratory Standards Institute . Performance standards for antimicrobial susceptibility testing. Wayne: Clinical and Laboratory Standards Institute; 2014.
    1. European Committee on Antimicrobial Susceptibility Testing. Antimicrobial susceptibility testing. 2014. . Accessed 27 Aug 2017.
    1. US Department of Health and Human Services. Common terminology criteria for adverse events (CTCAE). . Accessed 27 Aug 2017.
    1. Bellomo R, Kellum J, Ronco C. Acute renal failure: time for consensus. Intensive Care Med. 2001;27(11):1685–1688. doi: 10.1007/s00134-001-1120-6.
    1. Tumbarello M, Trecarichi EM, De Rosa FG, et al. ISGRI-SITA (Italian Study Group on Resistant Infections of the Società Italiana Terapia Antinfettiva). Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother. 2015;70(7):2133–2143. doi: 10.1093/jac/dkv086.
    1. Daikos GL, Petrikkos P, Psichogiou M, et al. Prospective observational study of the impact of VIM-1 metallo-beta-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother. 2009;53(5):1868–1873. doi: 10.1128/AAC.00782-08.
    1. Cerqueira GC, Earl AM, Ernst CM, et al. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proc Natl Acad Sci USA. 2017;114(5):1135–1140. doi: 10.1073/pnas.1616248114.
    1. Glasner C, Albiger B, Buist G, et al Carbapenemase-producing Enterobacteriaceae in Europe: a survey among national experts from 39 countries, February 2013. Euro Surveill. 2013;18(28):20525. . Accessed 27 Aug 2017.
    1. Lewis SJ, Mueller BA. Antibiotic dosing in patients with acute kidney injury: ‘enough but not too much’. J Intensive Care Med. 2014;31(3):164–176. doi: 10.1177/0885066614555490.

Source: PubMed

3
Abonnieren