Effect of Korea red ginseng on nonalcoholic fatty liver disease: an association of gut microbiota with liver function

Ji Taek Hong, Min-Jung Lee, Sang Jun Yoon, Seok Pyo Shin, Chang Seok Bang, Gwang Ho Baik, Dong Joon Kim, Gi Soo Youn, Min Jea Shin, Young Lim Ham, Ki Tae Suk, Bong-Soo Kim, Ji Taek Hong, Min-Jung Lee, Sang Jun Yoon, Seok Pyo Shin, Chang Seok Bang, Gwang Ho Baik, Dong Joon Kim, Gi Soo Youn, Min Jea Shin, Young Lim Ham, Ki Tae Suk, Bong-Soo Kim

Abstract

Background: Korea Red Ginseng (KRG) has been used as remedies with hepato-protective effects in liver-related condition. Microbiota related gut-liver axis plays key roles in the pathogenesis of chronic liver disease. We evaluated the effect of KRG on gut-liver axis in patients with nonalcoholic statohepatitis by the modulation of gut-microbiota.

Methods: A total of 94 patients (KRG: 45 and placebo: 49) were prospectively randomized to receive KRG (2,000 mg/day, ginsenoside Rg1+Rb1+Rg3 4.5mg/g) or placebo during 30 days. Liver function test, cytokeraton 18, and fatigue score were measured. Gut microbiota was analyzed by MiSeq systems based on 16S rRNA genes.

Results: In KRG group, the mean levels (before vs. after) of aspartate aminotransferase (53 ± 19 vs. 45 ± 23 IU/L), alanine aminotransferase (75 ± 40 vs. 64 ± 39 IU/L) and fatigue score (33 ± 13 vs. 26 ± 13) were improved (p < 0.05). In placebo group, only fatigue score (34 ± 13 vs. 31 ± 15) was ameliorated (p < 0.05). The changes of phyla were not statistically significant on both groups. In KRG group, increased abundance of Lactobacillus was related with improved alanine aminotransferase level and increased abundance of Clostridium and Intestinibacter was associated with no improvement after KRG supplementation. In placebo group, increased abundance of Lachnospiraceae could be related with aggravation of liver enzyme (p < 0.05).

Conclusion: KRG effectively improved liver enzymes and fatigue score by modulating gut-microbiota in patients with fatty liver disease. Further studies are needed to understand the mechanism of improvement of nonalcoholic steatohepatitis.

Clnicaltrialsgov: NCT03945123 (www.ClinicalTrials.gov).

Keywords: ALT, alanine aminotransferase; AST, aspartate aminotransferase; CK18, cytokeratin 18; KRG, Korea Red Ginseng; LEfSe, Linear Discriminant Analysis Effect Size; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; OTUs, operational taxonomic units; PCoA, principal coordinate analysis; fatty liver; ginseng; gut microbiota; nonalcoholic fatty liver disease.

Conflict of interest statement

The authors declare that there is no conflict of interest with regard to relevant financial interests, activities, relationships, affiliations, or any other as explicitly and implicitly expressed in the Editorial Policies for Authors.

© 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V.

Figures

Fig. 1
Fig. 1
Flow chart and study design. NAFLD, nonalcoholic fatty liver disease; KRG, Korean Red Ginseng.
Fig. 2
Fig. 2
Comparison of diversity indices and total bacterial amounts between before and after ingestion of KRG (n = 35) and placebo (n = 30) groups. (A) The number of observed OTUs, Shannon diversity indices, and total bacterial amounts were compared between before and after ingestion of KRG and placebo. (B) The difference of gut microbiota was analyzed in PCoA plot. The inter-variation and intra-variation of gut microbiota were compared in both of KRG and placebo group based on unweighted UniFrac distance. ∗p value < 0.05.
Fig. 3
Fig. 3
Different members of gut microbiota between KRG (n = 35) and placebo (n = 30) groups. (A) Comparison of gut microbiota composition between before and after ingestion in both of KRG and placebo group at phylum and genus level. (B) Different taxa of gut microbiota between KRG and placebo group before and after ingestion detected in LefSe analysis.
Fig. 4
Fig. 4
Significantly different genera between before and after ingestion in both of KRG and placebo sub-groups. Subjects in each treatment group were divided into three subgroups (improve, no change, and aggravate) according to ALT changed values. ∗p value < 0.05. Two groups were divided into three subgroups (improve [improved by 10 IU/L or more], no change [changed less than 10 IU/L], and aggravate [worsened by 10 or more]) according to ALT change.
Fig. 5
Fig. 5
Correlated genera with the values of AST and ALT in both of KRG (n = 35) and placebo (n = 30) groups. The correlation was determined by the Spearman's rank correlation using the proportions of genus in gut microbiota of each group and the values of AST and ALT. ∗p value < 0.05.

References

    1. Kleiner D.E., Brunt E.M., Van Natta M., Behling C., Contos M.J., Cummings O.W., Ferrell L.D., Liu Y.C., Torbenson M.S., Unalp-Arida A. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321.
    1. Brunt E.M. Nonalcoholic fatty liver disease: what the pathologist can tell the clinician. Digest Dis. 2012;30:61–68.
    1. Morris G., Berk M., Walder K., Maes M. Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses. BMC Med. 2015;13:28.
    1. Schuppan D., Schattenberg J.M. Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol. 2013;28:68–76.
    1. Brunt E.M., Wong V.W.-S., Nobili V., Day C.P., Sookoian S., Maher J.J., Bugianesi E., Sirlin C.B., Neuschwander-Tetri B.A., Rinella M.E. Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 2015;1:15080.
    1. Nassir F., Ibdah J. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15:8713–8742.
    1. Adolph T.E., Grander C., Moschen A.R., Tilg H.J.T. Liver–microbiome axis in health and disease. Trends Immunol. 2018;39:712–723.
    1. Stanislawski M.A., Lozupone C.A., Wagner B.D., Eggesbø M., Sontag M.K., Nusbacher N.M., Martinez M., Dabelea D.J. Gut microbiota in adolescents and the association with fatty liver: the EPOCH study. Pediatr Res. 2018
    1. Jiang C., Xie C., Li F., Zhang L., Nichols R.G., Krausz K.W., Cai J., Qi Y., Fang Z.-Z., Takahashi S.J.T. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest. 2015;125:386–402.
    1. Kolodziejczyk A.A., Zheng D., Shibolet O., Elinav E.J. The role of the microbiome in NAFLD and NASH. EMBO Mol Med. 2019;11
    1. Sharpton S.R., Ajmera V., Loomba R.J.C.G. Emerging role of the gut microbiome in nonalcoholic fatty liver disease: from composition to function. Clin Gastroenterol Hepatol. 2019;17:296–306.
    1. Heo S.B., Lim S.W., Jhun J.Y., La Cho M., Chung B.H., Yang C.W. Immunological benefits by ginseng through reciprocal regulation of Th17 and Treg cells during cyclosporine-induced immunosuppression. J Ginseng Res. 2016;40:18–27.
    1. Hong S.H., Suk K.T., Choi S.H., Lee J.W., Sung H.T., Kim C.H., Kim E.J., Kim M.J., Han S.H., Kim M.Y. Anti-oxidant and natural killer cell activity of Korean red ginseng (Panax ginseng) and urushiol (Rhus vernicifera Stokes) on non-alcoholic fatty liver disease of rat. Food Chem Toxicol. 2013;55:586–591.
    1. Shen L., Xiong Y., Wang D.Q., Howles P., Basford J.E., Wang J., Xiong Y.Q., Hui D.Y., Woods S.C., Liu M. Ginsenoside Rb1 reduces fatty liver by activating AMP-activated protein kinase in obese rats. J Lipid Res. 2013;54:1430–1438.
    1. Bang C.S., Hong S.H., Suk K.T., Kim J.B., Han S.H., Sung H., Kim E.J., Kim M.J., Kim M.Y., Baik S.K. Effects of Korean Red Ginseng (Panax ginseng), urushiol (Rhus vernicifera Stokes), and probiotics (Lactobacillus rhamnosus R0011 and Lactobacillus acidophilus R0052) on the gut–liver axis of alcoholic liver disease. J Ginseng Res. 2014;38:167–172.
    1. Jeong H., Kim J.-W., Yang M.-S., Park C., Kim J.H., Lim C.W., Kim B.J.T. Beneficial effects of Korean red ginseng in the progression of non-alcoholic steatohepatitis via FABP4 modulation. Am J Chinese Med. 2018;46:1581–1607.
    1. Hong M., Lee Y.H., Kim S., Suk K.T., Bang C.S., Yoon J.H., Baik G.H., Kim D.J., Kim M.J.J. Anti-inflammatory and antifatigue effect of Korean Red Ginseng in patients with nonalcoholic fatty liver disease. J Ginseng Res. 2016;40:203–210.
    1. Korean Association for the Study of the L KASL clinical practice guidelines: management of nonalcoholic fatty liver disease. Clin Mol Hepatol. 2013;19:325–348.
    1. George E.S., Forsyth A., Itsiopoulos C., Nicoll A.J., Ryan M., Sood S., Roberts S.K., Tierney A.C.J. Practical dietary recommendations for the prevention and management of nonalcoholic fatty liver disease in adults. Adv Nutr. 2018;9:30–40.
    1. Kargulewicz A., Stankowiak-Kulpa H., Grzymisławski M.J. Dietary recommendations for patients with nonalcoholic fatty liver disease. Prz Gastroenterol. 2014;9:18.
    1. Jeong T.C., Kim H.J., Park J.I., Ha C.S., Park J.D., Kim S.I., Roh J.K. Protective effects of red ginseng saponins against carbon tetrachloride-induced hepatotoxicity in Sprague Dawley rats. Planta Med. 1997;63:136–140.
    1. Mehta M., Duseja A., Mitra S., Das A., Taneja S., Dhiman R., Chawla Y.J. Cytokeratin-18 (CK-18) is A useful biomarker in differentiating between NASH and No-NASH amongst patients with nonalcoholic fatty liver disease (NAFLD) J Clin Exp Hepatol. 2017;7:S44.
    1. Tsutsui M., Tanaka N., Kawakubo M., Sheena Y., Horiuchi A., Komatsu M., Nagaya T., Joshita S., Umemura T., T Ichijo. Serum fragmented cytokeratin 18 levels reflect the histologic activity score of nonalcoholic fatty liver disease more accurately than serum alanine aminotransferase levels. J Clin Gastroenter. 2010;44:440–447.
    1. Papatheodoridis G.V., Hadziyannis E., Tsochatzis E., Georgiou A., Kafiri G., Tiniakos D.G., Margariti K., Manolakopoulos S., Manesis E.K., Archimandritis A.J.J. Serum apoptotic caspase activity in chronic hepatitis C and nonalcoholic Fatty liver disease. J Clin Gastroenter. 2010;44:e87–e95.
    1. Yoon S.-H., Ha S.-M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613.
    1. Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541.
    1. Zakrzewski M., Proietti C., Ellis J.J., Hasan S., Brion M.-J., Berger B., Krause L. Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions. Bioinformatics. 2016;33:782–783.
    1. Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C.J. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
    1. Murthy H.N., Dandin V.S., Paek K.Y. Hepatoprotective activity of ginsenosides from Panax ginseng adventitious roots against carbon tetrachloride treated hepatic injury in rats. J Ethnopharmacol. 2014;158:442–446.
    1. Seo S.-J., Cho J.Y., Jeong Y.H., Choi Y.-S. Effect of Korean red ginseng extract on liver damage induced by short-term and long-term ethanol treatment in rats. J Ginseng Res. 2013;37:194.
    1. Gui Q.F., Xu Z.R., Xu K.Y., Yang Y.M. The efficacy of ginseng-related therapies in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Medicine (Baltimore) 2016;95
    1. Kim H.-G., Cho J.-H., Yoo S.-R., Lee J.-S., Han J.-M., Lee N.-H., Ahn Y.-C., Son C.-G. Antifatigue effects of Panax ginseng CA Meyer: a randomised, double-blind, placebo-controlled trial. PloS One. 2013;8
    1. Schweizer J., Bowden P.E., Coulombe P.A., Langbein L., Lane E.B., Magin T.M., Maltais L., Omary M.B., Parry D.A., Rogers M.A. New consensus nomenclature for mammalian keratins. J Cell Biol. 2006;174:169–174.
    1. Pei R.-J., Danbara N., Tsujita-Kyutoku M., Yuri T., Tsubura A. Immunohistochemical profiles of Mallory body by a panel of anti-cytokeratin antibodies. Med Electron Microsc. 2004;37:114–118.
    1. Jang H.R., Park H.J., Kang D., Chung H., Nam M.H., Lee Y., Park J.H., Lee H.Y. A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption. Exp Mol Med. 2019;51:1–14.
    1. Hu J., Ma L., Nie Y., Chen J., Zheng W., Wang X., Xie C., Zheng Z., Wang Z., Yang T. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host Microbe. 2018;24:817–832 e8.
    1. Helenius T.O., Antman C.A., Asghar M.N., Nystrom J.H., Toivola D.M. Keratins are altered in intestinal disease-related stress responses. Cells. 2016;5
    1. Cho Y.J., Son H.J., Kim K.S. A 14-week randomized, placebo-controlled, double-blind clinical trial to evaluate the efficacy and safety of ginseng polysaccharide (Y-75) J Transl Med. 2014;12:283.
    1. Yeo C.R., Yang C., Wong T.Y., Popovich D.G. A quantified ginseng (Panax ginseng C.A. Meyer) extract influences lipid acquisition and increases adiponectin expression in 3T3-L1 cells. Molecules. 2011;16:477–492.
    1. Janssen A.W., Houben T., Katiraei S., Dijk W., Boutens L., Van Der Bolt N., Wang Z., Brown J.M., Hazen S.L., Mandard S. Modulation of the gut microbiota impacts nonalcoholic fatty liver disease: a potential role for bile acids. J Lipid Res. 2017;58:1399–1416.
    1. Mouzaki M., Comelli E.M., Arendt B.M., Bonengel J., Fung S.K., Fischer S.E., McGilvray I.D., Allard J.P. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58:120–127.
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., Almeida M., Arumugam M., Batto J.-M., Kennedy S. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541.
    1. Boursier J., Mueller O., Barret M., Machado M., Fizanne L., Araujo-Perez F., Guy C.D., Seed P.C., Rawls J.F., David L.A. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63:764–775.
    1. Mao J., Qi S., Cui Y., Dou X., Luo X.M., Liu J., Zhu T., Ma Y., Wang H. Lactobacillus rhamnosus GG attenuates lipopolysaccharide-induced inflammation and barrier dysfunction by regulating MAPK/NF-kappaB signaling and modulating metabolome in the piglet intestine. J Nutr. 2020
    1. Chen C.C., Lai C.C., Huang H.L., Su Y.T., Chiu Y.H., Toh H.S., Chiang S.R., Chuang Y.C., Lu Y.C., Tang H.J. Antimicrobial ability and mechanism analysis of Lactobacillus species against carbapenemase-producing Enterobacteriaceae. J Microbiol Immunol Infect. 2020
    1. Ren Q., Yang B., Zhu G., Wang S., Fu C., Zhang H., Ross R.P., Stanton C., Chen H., Chen W. Antiproliferation Activity and Mechanism of c9, t11, c15-CLNA and t9, t11, c15-CLNA from Lactobacillus plantarum ZS2058 on Colon Cancer Cells. Molecules. 2020;25
    1. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–1231.

Source: PubMed

3
Abonnieren