Mesenchymal stem cell surgery, rescue and regeneration in retinitis pigmentosa: clinical and rehabilitative prognostic aspects

Paolo Giuseppe Limoli, Celeste Silvana Serena Limoli, Marco Ulises Morales, Enzo Maria Vingolo, Paolo Giuseppe Limoli, Celeste Silvana Serena Limoli, Marco Ulises Morales, Enzo Maria Vingolo

Abstract

Purpose: To assess whether treatment with the Limoli Retinal Restoration Technique (LRRT) can be performed in patients with retinitis pigmentosa (RP), grafting the autologous cells in a deep scleral pocket above the choroid of each eye to exert their beneficial effect on the residual retinal cells.

Methods: The patients were subjected to a complete ophthalmological examination, including best corrected visual acuity (BCVA), close-up visus measurements, spectral domain-optical coherence tomography (SD-OCT), microperimetry (MY), and electroretinography (ERG). Furthermore, the complete ophthalmological examination was carried out at baseline (T0) and at 6 months (T180) after surgery. The Shapiro-Wilk test was used to assess the normality of distribution of the investigated parameters. A mixed linear regression model was used to analyse the difference in all the studied parameters at T0 and T180, and to compare the mean change between the two groups. All statistical analyses were performed with STATA 14.0 (Collage Station, Texas, USA).

Results: LRRT treatment was performed in 34 eyes of 25 RP patients recruited for the study. The eyes were classified in two groups on the basis of foveal thickness (FT) assessed by SD-OCT: 14 eyes in Group A (FT≤190μm) and the remaining 20 ones in Group B (FT > 190μm). Although it had not reached the statistical significance, Group B showed a better improvement in BCVA, residual close-up visus and sensitivity than Group A.

Conclusions: Previous studies have described the role of LRRT in slowing down retinal degenerative diseases. Consequently, this surgical procedure could improve the clinical and rehabilitative prognostic parameters in RP patients. On the other hand, further clinical research and studies with longer follow-up will be needed to evaluate its efficacy.

Keywords: Autograft; Limoli retinal restoration technique (LRRT); cell surgery; embryonic stem cells (ESC); foveal thickness; growth factor (GF); induced pluripotent stem cells (iPSCs); mesenchymal cell (MSC); retinitis pigmentosa (RP).

Figures

Fig. 1
Fig. 1
The suprachoroidal autograft obtained by Limoli Retinal Restoration Technique (LRRT) allows placing fat stromal cells, adipose tissue-derived stem cells (ADSCs) and platelets (PLTs) obtained from PLT-rich plasma (PRP) close to the choroid. The production of growth factors (GF), characteristic of these cells, is poured directly into the choroidal flow, helping to maintain retinal cell trophism. The GFs, through the choroidal flow, have a direct action on the choroid, on the Müller cells, on the retinal pigment epithelium (RPE) cells with improvement of physiology of the outer segments (OS), on the rods and on the cones.
Fig. 2
Fig. 2
The best corrected visual acuity (BCVA) was stable after suprachoroidal autograft with Limoli Retinal Restoration Technique (LRRT), or increased (+16.31%) in patients with foveal thickness (FT) >190μm.
Fig. 3
Fig. 3
Residual Close-Up Visus change post Limoli Retinal Restoration Technique (LRRT) depending on foveal thickness. Six months after surgery (T180) the close-up visus was stable if the foveal thickness (FT) ≤190μm or increased by +22.46% in the group where the FT was >190μm.
Fig. 4
Fig. 4
After stem cell surgery, Limoli Retinal Restoration Technique (LRRT), at 6 months (T180) there was a more relevant change for sensitivity in the group with foveal thickness >190μm (Group B), recorded with microperimetry.
Fig. 5
Fig. 5
A thin foveal thickness (FT) μm (Group A), as computed in our study, means that the retinal cell population is small, foveal structures are often dystrophic and the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex is no longer recognizable. Retinitis pigmentosa (RP). Limoli Retinal Restoration Technique (LRRT).
Fig. 6
Fig. 6
A considerable foveal thickness (FT) >190μm (Group B), as computed in our study, means that the retinal cell population is still large, foveal structures are still intact and the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex is recognizable. Mesenchymal cell administration showed the ability to exert a positive influence over functional parameters six months after Limoli Retinal Restoration Technique (LRRT). Retinitis pigmentosa (RP). Photopic electroretinogram (cERG).
Fig. 7
Fig. 7
The average threshold of close-up visus with magnifying system did not show a statistically significant change after cell surgery.
Fig. 8
Fig. 8
Compliance analysis of retinitis pigmentosa (RP) patients at 6 months (T180) post Limoli Retinal Restoration Technique (LRRT) depending on foveal thickness: compliance was good in 73.53% of all cases (both Groups A and B). Patients reported to see better 6 months after surgery, but the percentage reached 90% in those with FT > 190μm. If we considered only the improved group (25 eyes), 18 eyes (72%) belonged to Group B and 7 eyes (28%) to Group A.

References

    1. Aït-Ali, N., Fridlich, R., Millet-Puel, G., Clérin, E., Delalande, F., Jaillard, C., Blond, F., Perrocheau, L., Reichman, S., Byrne, L.C., Olivier-Bandini, A., Bellalou, J., Moyse, E., Bouillaud, F., Nicol, X., Dalkara, D., van Dorsselaer, A., Sahel, J.A., & Léveillard, T. (2015). Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell, 161(4), 817–32.
    1. Aizawa, S., Mitamura, Y., Baba, T., Hagiwara, A., Ogata, K., & Yamamoto, S. (2009). Correlation between visual function and photoreceptor inner/outer segment junction in patients with retinitis pigmentosa. Eye (London), 23, 304–308.
    1. Anitua, E., Andia, I., Ardanza, B., Nurden, P., & Nurden, A. T. (2004). Autologous platelets as a source of proteins for healing and tissue regeneration. Thrombosis and Haemostasis, 91(1), 4–15.
    1. Antoniades, H. N., & Williams, L. T. (1983). Human platelet-derived growth factor: structure and function. Federation Proceedings, 42(9), 2630–2634.
    1. Athanasiou, D., Aguilà, M., Bevilacqua, D., Novoselov, S. S., Parfitt, D. A., & Cheetham, M. E. (2013). The cell stress machinery and retinal degeneration. FEBS Letters, 587, 2008–2017.
    1. Atienzar-Aroca, S., Flores-Bellver, M., Serrano-Heras, G., Martinez-Gil, N., Barcia, J. M., Aparicio, S., Perez-Cremades, D., Garcia-Verdugo, J. M., Diaz-Llopis, M., Romero, F. J., & Sancho-Pelluz, J. (2016). Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells. Journal of Cellular and Molecular Medicine, 20(8), 1457–66.
    1. Baddour, J. A., Sousounis, K., & Tsonis, P. A. (2012). Organ repair and regeneration: an overview. Birth Defects Research, 96(1), 1–29.
    1. Beutelspacher, S. C., Serbecic, N., Barash, H., Burgansky-Eliash, Z., Grinvald, A., Krastel, H., Jonas, J. B. Retinal blood flowvelocitymeasured by retinal function imaging in retinitis pigmentosa (2011). Graefe’s Archive for Clinical and Experimental Ophthalmology, 249, 1855–1858.
    1. Byrne, L. C., Dalkara, D., Luna, G., Fisher, S. K., Clerin, E., Sahel, J. A., Leveillard, T., & Flannery, J. G. (2015). Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration. Journal of Clinical Investigation, 125(1), 105e116.
    1. Campbell, C. R., Berman, A. E., Weintraub, N. L., & Tang, Y. L. (2016). Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells. Medical Hypotheses, 88, 6–9.
    1. Campochiaro, P. A., & Mir, T. A. (2018). The mechanism of cone cell death in Retinitis Pigmentosa. Progress in Retinal and Eye Research, 62, 24e37.
    1. Çerman, E., Akkoç, T., Eraslan, M., Sahin, Ö., Özkara, S., Aker, F. V., Subasí, C., Karaöz, E., & Akkoç, T. (2016). Retinal electrophysiological effects of intravitreal bone marrow derived mesenchymal stem cells in streptozotocin induced diabetic rats. PLoS ONE, 11, e0156495.
    1. Cervelli, V., Bocchini, I., Di Pasquali, C., De Angelis, B., Cervelli, G., Curcio, C. B., Orlandi, A., Scioli, M. G., Tati, E., Delogu, P., & Gentile, P. (2013). P.R.L. platelet rich lipotransfert: our experience and current state of art in the combined use of fat and PRP. BioMed Research International, 2013, 434191.
    1. Chung, S., Rho, S., Kim, G., Kim, S. R., Baek, K. H., Kang, M., & Lew, H. (2016). Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury. International Journal of Molecular Medicine, 37, 1170–1180.
    1. Ciavatta, V. T., Kim, M., Wong, P., Nickerson, J. M., Shuler, R. K., McLean, G. Y., & Pardue, M. T. (2009). Retinal expression of Fgf2 in RCS rats with subretinal microphotodiode array. Investigative Ophthalmology & Visual Science, 50, 4523–4530.
    1. Ciavatta, V. T., Mocko, J. A., Kim, M. K., & Pardue, M. T. (2013). Subretinal electrical stimulation preserves inner retinal function in RCS rat retina. Molecular Vision, 19, 995–1005.
    1. Cui, Y., Xu, N., Xu, W., & Xu, G. (2016). Mesenchymal stem cells attenuate hydrogen peroxide-induced oxidative stress and enhance neuroprotective effects in retinal ganglion cells. In Vitro Cellular & Developmental Biology, 53, 328–335.
    1. Ding, S. L. S., Kumar, S., & Mok, P. L. (2017). Cellular Reparative Mechanisms of Mesenchymal Stem Cells for Retinal Diseases. International Journal of Molecular Medicine, 18, 1406.
    1. Emre, E., Yüksel, N., Duruksu, G., Pirhan, D., Subaşi, C., Erman, G., & Karaöz, E. (2015). Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy, 17(5), 543–59.
    1. Ezquer, M., Urzua, C. A., Montecino, S., Leal, K., Conget, P., & Ezquer, F. (2016). Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Research & Therapy, 7, 42.
    1. Finklestein, S., & Plomaritoglou, A.. Growth factors. In Miller, L. P., & Hayes, R. L. (2001). Head Trauma: Basic, Preclinical, and Clinical Directions New York: Wiley, 165–187.
    1. Fisher, M. D., Fleishhauer, J. C., Gillies, M. C., Sutter, F. K., Helbig, H., & Barthelmes, D. (2008). A new method to monitor visual field defects caused by photoreceptor degeneration by quantitative optical coherence tomography. Investigative Ophthalmology & Visual Science, 49, 3617–3621.
    1. Garcia, T. B., Hollborn, M., & Bringmann, A. (2017). Expression and signaling of NGF in the healthy and injured retina. Cytokine Growth Factor Reviews, 34, 43–57.
    1. Gasperi, M., & Castellano, A. E. (2010). Growth hormone/insulin-like growth factor I axis in neurodegenerative diseases. Journal of Endocrinological Investigation, 33(8), 587–91.
    1. Gentile, P., Orlandi, A., Scioli, M. G., Di Pasquali, C., Bocchini, I., Curcio, C. B., Floris, M., Fiaschetti, V., Floris, R., & Cervelli, V. (2012). A Comparative Translational Study: The Combined Use of Enhanced Stromal Vascular Fraction and Platelet-Rich Plasma Improves Fat Grafting Maintenance in Breast Reconstruction. Stem Cells Translational Medicine, 1, 341–351.
    1. Grumbles, R. M., Liu, Y., Thomas, C. M., Wood, P. M., & Thomas, C. K. (2013). Acute stimulation of transplanted neurons improves motoneuron survival, axon growth, and muscle reinnervation. Journal of Neurotrauma, 30(12), 1062–9.
    1. Guadagni, V., Novelli, E., & Strettoi, E. (2015). Environmental enrichment reduces photoreceptor degeneration and retinal inflammation in a mouse model of retinitis pigmentosa. Investigative Ophthalmology & Visual Science, 33(9), 10177–10192.
    1. Gupta, N., Brown, K. E., & Milam, A. H. (2003). Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and agerelated macular degeneration. Experimental Eye Research, 76, 463–71.
    1. Hamel, C. (2006). Retinitis pigmentosa. Orphanet Journal of Rare Diseases, 1, 40.
    1. Hanif, A. M., Kim, M. K., Thomas, J. G., Ciavatta, V. T., Chrenek, M., Hetling, J. R., & Pardue, M. T. (2016). Whole-eye electrical stimulation therapy preserves visual function and structure in P23H-1 rats. Experimental Eye Research, 149, 75–83.
    1. Hartong, D. T., Berson, L., & Dryja, T. P. (2006). Retinitis pigmentosa. Lancet, 368, 1795–1809.
    1. Hauck, S. M., Kinkl, N., Deeg, C. A., Swiatek-de Lange, M., Schöffmann, S., & Ueffing, M. (2006). GDNF family ligands trigger paracrine neuroprotective signalling in retinal glial cells. Molecular and Cellular Biology, 26(7), 2746–57.
    1. He, Y., Zhang, Y., Liu, X., Ghazaryan, E., Li, Y., Xie, J., & Su, G. (2014). Recent advances of stem cell therapy for retinitis pigmentosa. International Journal of Molecular Sciences, 15, 14456–74.
    1. Herse, P. (2005). Retinitis pigmentosa: visual function and multidisciplinary management. Clinical & Experimental Optometry, 88, 335–350.
    1. Hofer, H. R., & Tuan, R. S. (2016). Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Research & Therapy, 7(1), 131.
    1. Hood, D. C., Lin, C. E., Lazow, M. A., Locke, K. G., Zhang, X., & Birch, D. G. (2009). Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Investigative Ophthalmology & Visual Science, 50, 2328–2336.
    1. Huang, G., Pashmforoush, M., Chung, B., & Saxon, L.A. (2011). The role of cardiac electrophysiology in myocardial regenerative stem cell therapy. Journal of Cardiovascular Translational Research, 4(1), 61–5.
    1. Huo, D. M., Dong, F. T., Yu, W. H., & Gao, F. (2010). Differentiation of mesenchymal stem cell in the microenviroment of retinitis pigmentosa. International Journal of Ophthalmology, 3, 216–9.
    1. Idelson, M., Alper, R., Obolensky, A., Ben-Shushan, E., Hemo, I., Yachimovich-Cohen, N., Khaner, H., Smith, Y., Wiser, O., Gropp, M., Cohen, M. A., Even-Ram, S., Berman-Zaken, Y., Matzrafi, L., Rechavi, G., Banin, E., & Reubinoff, B. (2009). Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell, 5, 396–408.
    1. Johnson, T. V., Dekorver, N. W., Levasseur, V. A., Osborne, A., Tassoni, A., Lorber, B., Heller, J. P., Villasmil, R., Bull, N. D., Martin, K. R., & Tomarevet S, I. (2014). Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain, 137(Pt 2), 503–19.
    1. Jurk, K., & Kehrel, B. E. (2005). Platelets: physiology and biochemistry. Seminars in Thrombosis and Hemostasis, 31, 381–392.
    1. Kim, S. Y., Mocanu, C., McLeod, D. S., Bhutto, I. A., Merges, C., Eid, M., Tong, P., & Lutty, G. A. (2003). Expression of pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in sickle cell retina and choroid. Experimental Eye Research, 77, 433–445.
    1. Klassen, H. (2015). Stem cells in clinical trials for treatment of retinal degeneration. Expert Opinion on Biological Therapy, 16, 7–14.
    1. Kurimoto, T., Oono, S., Oku, H., Tagami, Y., Kashimoto, R., Takata, M., Okamoto, N., Ikeda, T., & Mimura, O. (2010). Transcorneal electrical stimulation increases chorioretinal blood flow in normal human subjects. Clinical Ophthalmology, 4, 1441–6.
    1. Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., Mourdjeva, M., Oreshkova, T., Belemezova, K., & Kyurkchiev, S. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World Journal of Stem Cells, 6(5), 552–570.
    1. Langmann, T. (2007). Microglia activation in retinal degeneration. Journal of Leukocyte Biology, 81, 1345–1351.
    1. Liang, F. Q., Aleman, T. S., Dejneka, N. S., Dudus, L., Fisher, K. J., Maguire, A. M., Jacobson, S. G., & Bennett, J. (2001). Long-term protection of retinal structure but not function using rAAV. CNTF in animal models of retinitis pigmentosa. Molecular Therapy, 4, 461–472.
    1. Limoli, P. G. (2014). The retinal cell-neuroregeneration. Principles, applications and perspectives. Limoli Retina Regeneration Tecnique, 407-424.
    1. Limoli, P. G., Limoli, C., Vingolo, E. M., Scalinci, S. Z., & Nebbioso, M. (2016). Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget, 7(30), 46913–46923.
    1. Limoli, P. G., Vingolo, E. M., Morales, M. U., Nebbioso, M., & Limoli, C. (2014). Preliminary Study on Electrophysiological Changes After Cellular Autograft in Age-Related Macular Degeneration. Medicine, 93(29), e355.
    1. Limoli, P. G., Limoli, C., Vingolo, E. M., Limoli, C., Scalinci, S. Z., & Nebbioso, M. (2018). Regenerative Therapy by Suprachoroidal Cell Autograft in Dry Age-Related Macular Degeneration: Preliminary in Vivo Report. Journal of Visualized Experiments, 132, e56469..
    1. Lindroos, B., Suuronen, R., & Miettinen, S. (2010). The potential of adipose stem cells in regenerative medicine. Stem Cell Reviews and Reports, 7, 269–291.
    1. Liu, H., Yang, K., Xin, T., Wu, W., & Chen, Y. (2012). Implanted electro-acupuncture electric stimulation improves outcome of stem cells’ transplantation in spinal cord injury. Artificial Cells Blood Substitutes and Biotechnology, 40(5), 331–7.
    1. Liu, G., Liu, X., Li, H., Du, Q., & Wang, F. (2016). Optical coherence tomographic analysis of retina in retinitis pigmentosa patients. Ophthalmic Research, 56, 111–122.
    1. Locke, C. J., Congrove, N. R., Dismuke, W. M., Bowen, T. J., Stamer, W. D., & McKay, B.S. (2014). Controlled exosome release from the retinal pigment epithelium in situ. Experimental Eye Research, 129, 1–4.
    1. Luo, S., Hao, L., Li, X., Dongmei, Y., Diao, Z., Ren, L., & Xu, H. (2013). Adipose tissue-derived stem cells treated with estradiol enhance survival of autologous fat transplants. The Tohoku Journal of Experimental Medicine, 231, 101–110.
    1. Mammoto, T., Jiang, A., Jiang, E., & Mammoto, A. (2013). Platelet rich plasma extract promotes angiogenesis through the angiopoietin1-Tie2 pathway. Microvascular Research, 89, 15–24.
    1. Manthey, A. L., Liu, W., Jiang, Z. X., Lee, M. H. K., Ji, J., So, K. F., Lai, J. S. M., Lee, V. W. H., & Chiu, K. (2017). Using electrical stimulation to enhance the efficacy of cell transplantation therapies for neurodegenerative retinal diseases: Concepts, challenges, and future perspectives. Cell Transplant, 26(6), 949–965.
    1. Matsumoto, M., Imura, T., Fukazawa, T., Sun, Y., Takeda, M., Kajiume, T., Kawahara, Y., & Yuge, L. (2013). Electrical stimulation enhances neurogenin2 expression through beta-catenin signaling pathway of mouse bone marrow stromal cells and intensifies the effect of cell transplantation on brain injury. Neuroscience Letters, 533, 71–6.
    1. McCulloch, D. L., Marmor, M. F., Brigell, M. G., Hamilton, R., Holder, G.E., Tzekov, R., & Bach, M. (2015). ISCEV Standard for full-field clinical electroretinography. Documenta Ophthalmologica, 130, 1–1.
    1. Mead, B., Logan, A., Berry, M., Leadbeater, W., & Scheven, B. A. (2014). Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adiposederived mesenchymal stem cells. PLoS ONE, 9(10), e109305.
    1. Jones, M. K., Lu, B., Girman, S., & Wang, S. (2017). Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Progress in Retinal and Eye Research, 58, 1–27.
    1. Mishra, A., Velotta, J., Brinton, T. J., Wang, X., Chang, S., Palmer, O., Sheikh, A., Chung, J., Yang, P. C., Robbins, R., & Fischbein, M. (2011). RevaTen platelet-rich plasma improves cardiac function after myocardial injury. Cardiovascular Revascularization Medicine, 12(3), 158–163.
    1. Miyake, K., Yoshida, M., Inoue, Y., & Hata, Y. (2007). Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. Investigative Ophthalmology & Visual Science, 48, 2356–2361.
    1. Mizuno, H. (2009). Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. Journal of Nippon Medical School, 76(2), 56–66.
    1. Moraes, L., Vasconcelos-dos-Santos, A., Santana, F. C., Godoy, M. A., Rosado-de-Castro, P. H., Azevedo-Pereira, J. R. L., Monteiro Cintra, W., Gasparetto, E. L., Santiago, M. F., & Mendez-Otero, R. (2012). Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington’s disease. Stem Cell Research, 9(2), 143–55.
    1. Nakagami, H., Morishitah, R., Maeda, K., Kikuchi, Y., Ogihara, T., & Kaneda, Y. (2006). Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. Journal of Atherosclerosis and Thrombosis, 13, 77–81.
    1. Nebbioso, M., Barbato, A., & Pescosolido, N. (2014). Scotopic microperimetry in the early diagnosis of age-related macular degeneration: preliminary study. BioMed Research International, 2014, 671529.
    1. Morimoto, T., Fujikado, T., Choi, J. S., Kanda, H., Miyoshi, T., Fukuda, Y., & Tano, Y. (2007). Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in royal college of surgeons rats. Investigative Ophthalmology & Visual Science, 48, 4725–4732.
    1. Nebbioso, M., Scarsella, G., Tafani, M., & Pescosolido, N. (2013). Mechanisms of ocular neuroprotection by antioxidant molecules in animal models. Journal of Biological Regulators and Homeostatic Agents, 27(1), 197–209.
    1. Oner, A., Gonen, Z. B., Sevim, D. G., Sinim Kahraman, N., & Unlu, M. (2019). Six-month results of suprachoroidal adipose tissue-derived mesenchymal stem cell implantation in patients with optic atrophy: a phase 1/2 study. International Ophthalmology, 39(12), 2913–2922.
    1. Otani, A., Dorrell, M. I., Kinder, K., Moreno, S. K., Nusinowitz, S., Banin, E., Heckenlively, J., & Friedlander, M. (2004). Rescue of retinal degeneration by intravitreally injected adult bone marrow–derived lineage-negative hematopoietic stem cells. Journal of Clinical Investigation, 114, 765–774.
    1. Pagon, R. A. Retinitis pigmentosa (1988). Survey of Ophthalmology, 33, 137–177.
    1. Pardue, M. T., Phillips, M. J., Yin, H., Sippy, B. D., Webb-Wood, S., Chow, A. Y., & Ball, S. L. (2005). Neuroprotective effect of subretinal implants in the RCS rat. Investigative Ophthalmology & Visual Science, 46, 674–682.
    1. Peng, B., Xiao, J., Wang, K., So, K. F., Tipoe, G. L., & Lin, B. (2014). Suppression of Microglial Activation Is Neuroprotective in a Mouse Model of Human Retinitis Pigmentosa. The Journal of Neuroscience, 34(24), 8139–8150.
    1. Pescosolido, N., Barbato, A., Pascarella, A., Giannotti, R., Genzano, M., & Nebbioso, M. (2014). Role of Protease-Inhibitors in Ocular Diseases. Molecules, 19(12), 20557–20569.
    1. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–7.
    1. Punzo, C., Xiong, W., Cepko, C. L., Loss of Daylight Vision in Retinal Degeneration: Are Oxidative Stress and Metabolic Dysregulation to Blame? Journal of Biological Chemistry, 287(3), 1642–8.
    1. Qureshi, A. H., Chaoji, V., Maiguel, D., Faridi, M. H., Barth, C. J., Salem, S. M., Singhal, M., Stoub, D., Krastins, B., Ogihara, M., Zaki, M. J., & Gupta, V. (2009). Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PLoS One, 22(6), 490–495.
    1. Rajashekhar, G., Ramadan, A., Abburi, C., Callaghan, B., Traktuev, D. O., Evans-Molina, C., Maturi, R., Harris, A., Kern, T. S., & March, K. L. (2014). Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy. PLoS One, 9(1), e84671.
    1. Romanov, Y. A., Darevskaya, A. N., Merzlikina, N. V., & Buravkova, L. B. (2005). Mesenchymal Stem cells from Human Bone Marrow and Adipose Tissue: Isolation, Characterization, and Differentiation Potentialities. Cell Technologies in Biology and Medicine, 3, 158–163.
    1. Sabel, B. A., Flammer, J., & Merabet, L. B. (2018). Residual vision activation and the brain-eye-vascular triad: Dysregulation, plasticity and restoration in low vision and blindness –a review. Restorative Neurology and Neuroscience, 36(6), 767–791.
    1. Sandberg, M. A., Brockhurst, R. J., Gaudio, A. R., & Berson, E. L. (2005). The association between visual acuity and central retinal thickness in retinitis pigmentosa. Investigative Ophthalmology & Visual Science, 46, 3349–3354.
    1. Schatz, A., Arango-Gonzalez, B., Fischer, D., Enderle, H., Bolz, S., Rock, T., Naycheva, L., Grimm, C., Messias, A., Zrenner, E., Bartz-Schmidt, K. U., Willmann, G., & Gekeler, F. (2012). Transcorneal electrical stimulation shows neuroprotective effects in retinas of light-exposed rats. Investigative Ophthalmology & Visual Science, 53, 5552–5561.
    1. Schaffler, A., & Buchler, C. (2007). Concise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells, 25, 818–882.
    1. Schatz, A., Rock, T., Naycheva, L., Willmann, G., Wilhelm, B., Peters, T., Bartz-Schmidt, K. U., Zrenner, E., Messias, A., & Gekeler, F. (2011). Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled exploratory study. Investigative Ophthalmology & Visual Science, 52, 4485–4496.
    1. Schmid, H., Herrmann, T., Kohler, K., & Stett, A. (2009). Neuroprotective effect of transretinal electrical stimulation on neurons in the inner nuclear layer of the degenerated retina. Brain Research Bulletin, 79, 15–25.
    1. Schmidt, K. U., Willmann, G., & Gekeler, F. (2012). Transcorneal electrical stimulation shows neuroprotective effects in retinas of light-exposed rats. Investigative Ophthalmology & Visual Science, 53, 5552–5561.
    1. Shen, J., Yang, X., Dong, A., Petters, R. M., Peng, Y. W., Wong, F., & Campochiaro, P. A. (2005). Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa. Journal of Cellular Physiology, 203(3), 457–64.
    1. Siniscalco, D., Giordano, C., Galderisi, U., Luongo, L., Alessio, N., Di Bernardo, G., de Novellis, V., Rossi, F., & Maione, S. (2010). Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cellular and Molecular Life Sciences, 67, 655–69.
    1. Takahashi, K., & Yamanaka, S. (2013). Induced pluripotent stem cells in medicine and biology. Development, 140, 2457–2461.
    1. Tamaki, M., & Matsuo, T. (2011). Optical coherence tomographic parameters as objective signs for visual acuity in patients with retinitis pigmentosa, future candidates for retinal prostheses. Journal of Artificial Organs, 14, 140–150.
    1. Tilg, H., & Moschen, A. (2006). Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nature Reviews Immunology, 6, 772–783.
    1. Tucker, B. A., Mullins, R. F., & Stone, E. M. (2014). Stem cells for investigation and treatment of inherited retinal disease. Human Molecular Genetics, 23, R9–R16.
    1. Ueki, Y., & Reh, T. A. (2013). EGF stimulates Müller glial proliferation via a BMP-dependent mechanism. Glia, 61, 778–789.
    1. Verboschi, F., Domanico, D., Nebbioso, M., Corradetti, G., Scalinci, S. Z., & Vingolo, E. M. (2013). New trends in visual rehabilitation with MP-1 microperimeter biofeedback: optic neural dysfunction. Functional Neurology, 28(4), 285–91.
    1. Wang, A. L., Lukas, T. J., Yuan, M., Du, N., Tso, M.O., & Neufeld, A.H. (2009). Autophagy and exosomes in the aged retinal pigment epithelium: Possible relevance to drusen formation and age-related macular degeneration. PLoS One, 4(1), e4160.
    1. Wang, P., Mariman, E., Renes, J., & Keijer, J. (2008). The secretory function of adipocytes in the physiology of white adipose tissue. Journal of Cellular Physiology, 216, 3–13.
    1. Witkin, A. J., Ko, T. H., Fujimoto, J. G., Chan, A., Drexler, W., Schuman, J. S., Reichel, E., & Duker, J. S. (2006). Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. American Journal of Ophthalmology, 142, 945–952.
    1. Yang, Y., Mohand-Said, S., Danan, A., Simonutti, M., Fontaine, V., Clerin, E., Picaud, S., Léveillard, T., & Sahel, J. A. (2009). Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. Molecular Therapy, 17(5), 787–95.
    1. Yang, Y., Peng, J., Ying, D., & Peng, Q. H. (2018). A Brief Review on the Pathological Role of Decreased Blood Flow Affected in Retinitis Pigmentosa. Journal of Ophthalmology, 3249064.
    1. Zarbin, M. (2016). Cell-based therapy for degenerative retinal disease. Trends in Molecular Medicine, 22, 115–34.
    1. Zeiss, C. J., & Johnson, E. A. (2004). Proliferation of microglia, but not photoreceptors, in the outer nuclear layer of the rd-1 mouse. Investigative Ophthalmology & Visual Science, 45(3), 971–6.
    1. Zeng, H. Y., Zhu, X. A., Zhang, C., Yang, L. P., Wu, L. M., & Tso, M. O. M. (2005). Identification of sequential events and factors associated with microglial activation, migration, and cytotoxicity in retinal degeneration in rd mice. Investigative Ophthalmology & Visual Science, 46(8), 2992–2999.
    1. Zhou, W. T., Ni, Y. Q., Jin, Z. B., Zhang, M., Wu, J. H., Zhu, Y., Xu, G. Z., & Gan, D. K. (2012). Electrical stimulation ameliorates light-induced photoreceptor degeneration in vitro via suppressing the proinflammatory effect of microglia and enhancing the neurotrophic potential of Muller cells. Experimental Neurology, 238, 192–208.

Source: PubMed

3
Abonnieren