Randomised clinical study: Aspergillus niger-derived enzyme digests gluten in the stomach of healthy volunteers

B N Salden, V Monserrat, F J Troost, M J Bruins, L Edens, R Bartholomé, G R Haenen, B Winkens, F Koning, A A Masclee, B N Salden, V Monserrat, F J Troost, M J Bruins, L Edens, R Bartholomé, G R Haenen, B Winkens, F Koning, A A Masclee

Abstract

Background: Aspergillus niger prolyl endoprotease (AN-PEP) efficiently degrades gluten molecules into non-immunogenic peptides in vitro.

Aim: To assess the efficacy of AN-PEP on gluten degradation in a low and high calorie meal in healthy subjects.

Methods: In this randomised, double-blind, placebo-controlled, cross-over study 12 healthy volunteers attended to four test days. A liquid low or high calorie meal (4 g gluten) with AN-PEP or placebo was administered into the stomach. Via a triple-lumen catheter gastric and duodenal aspirates were sampled, and polyethylene glycol (PEG)-3350 was continuously infused. Acetaminophen in the meals tracked gastric emptying time. Gastric and duodenal samples were used to calculate 240-min area under the curve (AUC0-240 min ) of ?-gliadin concentrations. Absolute ?-gliadin AUC0-240 min was calculated using duodenal PEG-3350 concentrations.

Results: AN-PEP lowered α-gliadin concentration AUC0-240 min, compared to placebo, from low and high calorie meals in stomach (low: 35 vs. 389 μg × min/mL; high: 53 vs. 386 μg × min/mL; P < 0.001) and duodenum (low: 7 vs. 168 μg × min/mL; high: 4 vs. 32 μg × min/mL; P < 0.001) and absolute α-gliadin AUC0-240 min in the duodenum from low (2813 vs. 31 952 μg × min; P < 0.001) and high (2553 vs. 13 095 μg × min; P = 0.013) calorie meals. In the placebo group, the high compared to low calorie meal slowed gastric emptying and lowered the duodenal α-gliadin concentration AUC0-240 min (32 vs. 168 μg × min/mL; P = 0.001).

Conclusions: AN-PEP significantly enhanced gluten digestion in the stomach of healthy volunteers. Increasing caloric density prolonged gastric residence time of the meal. Since AN-PEP already degraded most gluten from low calorie meals, no incremental effect was observed by increasing meal caloric density. ClinicalTrials.gov, Number: NCT01335503; www.trialregister.nl, Number: NTR2780.

© 2015 John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
(a) DQ2.5‐glia‐α3 concentration (mean ± SEM) over time in the stomach in low calorie meals. (b) DQ2.5‐glia‐α3 concentration (mean ± S.E.M.) over time in the stomach in high calorie meals. (c) DQ2.5‐glia‐α3 concentration (mean ± S.E.M.) over time in the duodenum in low calorie meals. (d) DQ2.5‐glia‐α3 concentration (mean ± S.E.M.) over time in the duodenum in high calorie meals. (e) Absolute DQ2.5‐glia‐α3 output (mean ± S.E.M.) over time in the duodenum in low calorie meals. (f) Absolute DQ2.5‐glia‐α3 output (mean ± S.E.M.) over time in the duodenum in high calorie meals.
Figure 2
Figure 2
DQ2.5‐glia‐α3 concentration over time in the duodenum of the individual subjects in low calorie meals (LCM) and high calorie meals (HCM). (a) + (b): subject 5. (c) + (d): subject 6. (e) + (f): subject 7. (g) + (h): subject 10. (i) + (j): subject 11. (k) + (l): subject 12. (m) + (n): subject 13. (o) + (p): subject 14. (q) + (r): subject 15. (s) + (t): subject 16. (u): subject 17. (v) + (w): subject 19.
Figure 3
Figure 3
Representative western blot showing degradation of water‐insoluble DQ2.5‐glia‐α1 over time in the stomach and duodenum in low and high calorie meals with and without AN‐PEP.
Figure 4
Figure 4
Representative SDS‐PAGE gel showing the presence of AN‐PEP protein in gastric and duodenal aspirates.

References

    1. Piper JL, Gray GM, Khosla C. Effect of prolyl endopeptidase on digestive‐resistant gliadin peptides in vivo. J Pharmacol Exp Ther 2004; 311: 213–9.
    1. West J, Logan RF, Hill PG, et al Seroprevalence, correlates, and characteristics of undetected coeliac disease in England. Gut 2003; 52: 960–5.
    1. Maki M, Mustalahti K, Kokkonen J, et al Prevalence of Celiac disease among children in Finland. N Engl J Med 2003; 348: 2517–24.
    1. Fasano A, Berti I, Gerarduzzi T, et al Prevalence of celiac disease in at‐risk and not‐at‐risk groups in the United States: a large multicenter study. Arch Intern Med 2003; 163: 286–92.
    1. Bingley PJ, Williams AJ, Norcross AJ, et al Undiagnosed coeliac disease at age seven: population based prospective birth cohort study. BMJ 2004; 328: 322–3.
    1. Green PH, Cellier C. Celiac disease. N Engl J Med 2007; 357: 1731–43.
    1. Sapone A, Bai JC, Ciacci C, et al Spectrum of gluten‐related disorders: consensus on new nomenclature and classification. BMC Med 2012; 10: 13.
    1. Sapone A, Lammers KM, Casolaro V, et al Divergence of gut permeability and mucosal immune gene expression in two gluten‐associated conditions: celiac disease and gluten sensitivity. BMC Med 2011; 9: 23.
    1. Sapone A, Lammers KM, Mazzarella G, et al Differential mucosal IL‐17 expression in two gliadin‐induced disorders: gluten sensitivity and the autoimmune enteropathy celiac disease. Int Arch Allergy Immunol 2010; 152: 75–80.
    1. Ferguson A, Gillett H, Humphreys K, Kingstone K. Heterogeneity of celiac disease: clinical, pathological, immunological, and genetic. Ann N Y Acad Sci 1998; 859: 112–20.
    1. Lerner A. New therapeutic strategies for celiac disease. Autoimmun Rev 2010; 9: 144–7.
    1. Sollid LM, Khosla C. Future therapeutic options for celiac disease. Nat Clin Pract Gastroenterol Hepatol 2005; 2: 140–7.
    1. Sollid LM, Khosla C. Novel therapies for coeliac disease. J Intern Med 2011; 269: 604–13.
    1. Gass J, Khosla C. Prolyl endopeptidases. Cell Mol Life Sci 2007; 64: 345–55.
    1. Matysiak‐Budnik T, Candalh C, Cellier C, et al Limited efficiency of prolyl‐endopeptidase in the detoxification of gliadin peptides in celiac disease. Gastroenterology 2005; 129: 786–96.
    1. Shan L, Marti T, Sollid LM, Gray GM, Khosla C. Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem J 2004; 383(Pt 2): 311–8.
    1. Shan L, Molberg O, Parrot I, et al Structural basis for gluten intolerance in celiac sprue. Science 2002; 297: 2275–9.
    1. Gass J, Ehren J, Strohmeier G, Isaacs I, Khosla C. Fermentation, purification, formulation, and pharmacological evaluation of a prolyl endopeptidase from Myxococcus xanthus: implications for Celiac Sprue therapy. Biotechnol Bioeng 2005; 92: 674–84.
    1. Stepniak D, Spaenij‐Dekking L, Mitea C, et al Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am J Physiol Gastrointest Liver Physiol 2006; 291: G621–9.
    1. Gass J, Vora H, Bethune MT, Gray GM, Khosla C. Effect of barley endoprotease EP‐B2 on gluten digestion in the intact rat. J Pharmacol Exp Ther 2006; 318: 1178–86.
    1. Siegel M, Garber ME, Spencer AG, et al Safety, tolerability, and activity of ALV003: results from two phase 1 single, escalating‐dose clinical trials. Dig Dis Sci 2012; 57: 440–50.
    1. Lahdeaho ML, Kaukinen K, Laurila K, et al Glutenase ALV003 attenuates gluten‐induced mucosal injury in patients with celiac disease. Gastroenterology 2014; 146: 1649–58.
    1. Gass J, Bethune MT, Siegel M, Spencer A, Khosla C. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology 2007; 133: 472–80.
    1. ANSES ‐ French Agency for Food, Environmental and Occupational Health & Safety . de l?Anses relatif à une demande d'autorisation de mise sur le marché d'un nouvel aliment ou d'un ingrédient alimentaire: préparation enzymatique contenant une activité protéase pour une utilisation dans les compléments alimentaires. 31 July 2014.
    1. Mitea C, Havenaar R, Drijfhout JW, Edens L, Dekking L, Koning F. Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: implications for coeliac disease. Gut 2008; 57: 25–32.
    1. Tack GJ, van de Water JM, Bruins MJ, et al Consumption of gluten with gluten‐degrading enzyme by celiac patients: a pilot‐study. World J Gastroenterol 2013; 19: 5837–47.
    1. Beglinger C, Fried M, Whitehouse I, Jansen JB, Lamers CB, Gyr K. Pancreatic enzyme response to a liquid meal and to hormonal stimulation. Correlation with plasma secretin and cholecystokinin levels. J Clin Invest 1985; 75: 1471–6.
    1. Vu MK, van der Veek PP, Frolich M, et al Does jejunal feeding activate exocrine pancreatic secretion? Eur J Clin Invest 1999; 29: 1053–9.
    1. Lam WF, Gielkens HA, Coenraad M, Souverijn JH, Lamers CB, Masclee AA. Effect of insulin and glucose on basal and cholecystokinin‐stimulated exocrine pancreatic secretion in humans. Pancreas 1999; 18: 252–8.
    1. Symersky T, Vu MK, Frolich M, Biemond I, Masclee AA. The effect of equicaloric medium‐chain and long‐chain triglycerides on pancreas enzyme secretion. Clin Physiol Funct Imaging 2002; 22: 307–11.
    1. Mujico JR, Dekking L, Kooy‐Winkelaar Y, et al Validation of a new enzyme‐linked immunosorbent assay to detect the triggering proteins and peptides for celiac disease: interlaboratory study. J AOAC Int 2012; 95: 206–15.
    1. Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F. Nomenclature and listing of celiac disease relevant gluten T‐cell epitopes restricted by HLA‐DQ molecules. Immunogenetics 2012; 64: 455–60.
    1. van Wijck K, Bessems BA, van Eijk HM, Buurman WA, Dejong CH, Lenaerts K. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose? Clin Exp Gastroenterol 2012; 5: 139–50.
    1. Spaenij‐Dekking EH, Kooy‐Winkelaar EM, Nieuwenhuizen WF, Drijfhout JW, Koning F. A novel and sensitive method for the detection of T cell stimulatory epitopes of alpha/beta‐ and gamma‐gliadin. Gut 2004; 53: 1267–73.
    1. Kwiatek MA, Menne D, Steingoetter A, et al Effect of meal volume and calorie load on postprandial gastric function and emptying: studies under physiological conditions by combined fiber‐optic pressure measurement and MRI. Am J Physiol Gastrointest Liver Physiol 2009; 297: G894–901.
    1. Hausch F, Shan L, Santiago NA, Gray GM, Khosla C. Intestinal digestive resistance of immunodominant gliadin peptides. Am J Physiol Gastrointest Liver Physiol 2002; 283: G996–1003.
    1. Boivin M, Lanspa SJ, Zinsmeister AR, Go VL, DiMagno EP. Are diets associated with different rates of human interdigestive and postprandial pancreatic enzyme secretion? Gastroenterology 1990; 99: 1763–71.
    1. Lahdeaho ML, Lindfors K, Airaksinen L, Kaukinen K, Maki M. Recent advances in the development of new treatments for celiac disease. Expert Opin Biol Ther 2012; 12: 1589–600.

Source: PubMed

3
Abonnieren