Normal Neurochemistry in the Prefrontal and Cerebellar Brain of Adults with Attention-Deficit Hyperactivity Disorder

Dominique Endres, Evgeniy Perlov, Simon Maier, Bernd Feige, Kathrin Nickel, Peter Goll, Emanuel Bubl, Thomas Lange, Volkmar Glauche, Erika Graf, Dieter Ebert, Esther Sobanski, Alexandra Philipsen, Ludger Tebartz van Elst, Dominique Endres, Evgeniy Perlov, Simon Maier, Bernd Feige, Kathrin Nickel, Peter Goll, Emanuel Bubl, Thomas Lange, Volkmar Glauche, Erika Graf, Dieter Ebert, Esther Sobanski, Alexandra Philipsen, Ludger Tebartz van Elst

Abstract

Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. In an attempt to extend earlier neurochemical findings, we organized a magnetic resonance spectroscopy (MRS) study as part of a large, government-funded, prospective, randomized, multicenter clinical trial comparing the effectiveness of specific psychotherapy with counseling and stimulant treatment with placebo treatment (Comparison of Methylphenidate and Psychotherapy Study). We report the baseline neurochemical data for the anterior cingulate cortex (ACC) and the cerebellum in a case-control setting. For the trial, 1,480 adult patients were contacted for participation, 518 were assessed for eligibility, 433 were randomized, and 187 were potentially eligible for neuroimaging. The control group included 119 healthy volunteers. Single-voxel proton MRS was performed. In the patient group, 113 ACC and 104 cerebellar spectra fulfilled all quality criteria for inclusion in statistical calculations, as did 82 ACC and 78 cerebellar spectra in the control group. We did not find any significant neurometabolic differences between the ADHD and control group in the ACC (Wilks' lambda test: p = 0.97) or in the cerebellum (p = 0.62). Thus, we were unable to replicate earlier findings in this methodologically sophisticated study. We discuss our findings in the context of a comprehensive review of other MRS studies on ADHD and a somewhat skeptical neuropsychiatric research perspective. As in other neuropsychiatric disorders, the unclear nosological status of ADHD might be an explanation for false-negative findings.

Keywords: MRS; anterior cingulate cortex; attention-deficit hyperactivity disorder; cerebellum; glutamate; nosology.

Figures

Figure 1
Figure 1
MRI data acquisition and spectroscopic analyses. MPRAGE, magnetization-prepared rapid-acquisition gradient echo; FOV, field of view; TR, repetition time; TE, echo time; ACC, anterior cingulate cortex; PRESS, point-resolved spectroscopy; LCModel, linear combination of model spectra; Cre, creatine; t-Cho, phosphorylcholine + glycerylphosphorylcholine; Glx, glutamate + glutamine; NAA, N-acetylaspartate; mI, myo-Inositol; ppm, parts per million; CRLBs, Cramér-Rao lower bounds; SPM8, Statistical Parametric Mapping – Version 8; GM, gray matter; WM, white matter; CSF, cerebrospinal fluid.
Figure 2
Figure 2
Metabolite signals presented as scatterplots. CI, 95% confidence interval; Cre, creatine; t-Cho, phosphorylcholine +glycerylphosphorylcholine; Glx, glutamate + glutamine; NAA, N-acetylaspartate; mI, myo-Inositol; IU, institutional unit.

References

    1. Al-Shahi Salman R., Beller E., Kagan J., Hemminki E., Phillips R. S., Savulescu J., et al. (2014). Increasing value and reducing waste in biomedical research regulation and management. Lancet 383, 176–185.10.1016/S0140-6736(13)62297-7
    1. Aoki Y., Inokuchi R., Suwa H., Aoki A. (2013). Age-related change of neurochemical abnormality in attention-deficit hyperactivity disorder: a meta-analysis. Neurosci. Biobehav. Rev. 37, 1692–1701.10.1016/j.neubiorev.2013.04.019
    1. Arcos-Burgos M., Londoño A. C., Pineda D. A., Lopera F., Palacio J. D., Arbelaez A., et al. (2012). Analysis of brain metabolism by proton magnetic resonance spectroscopy ((1)H-MRS) in attention-deficit/hyperactivity disorder suggests a generalized differential ontogenic pattern from controls. Atten. Defic. Hyperact. Disord. 4, 205–212.10.1007/s12402-012-0088-0
    1. Ashburner J., Friston K. J. (2005). Unified segmentation. Neuroimage 26, 839–851.10.1016/j.neuroimage.2005.02.018
    1. Benamor L. (2014). (1)H-Magnetic resonance spectroscopy study of stimulant medication effect on brain metabolites in French Canadian children with attention deficit hyperactivity disorder. Neuropsychiatr. Dis. Treat. 10, 47–54.10.2147/NDT.S52338
    1. Biederman J. (2005). Attention-deficit/hyperactivity disorder: a selective overview. Biol. Psychiatry 57, 1215–1220.10.1016/j.biopsych.2004.10.020
    1. Carrey N., MacMaster F. P., Fogel J., Sparkes S., Waschbusch D., Sullivan S., et al. (2003). Metabolite changes resulting from treatment in children with ADHD: a 1H-MRS study. Clin. Neuropharmacol. 26, 218–221.10.1097/00002826-200307000-00013
    1. Carrey N., MacMaster F. P., Sparkes S. J., Khan S. C., Kusumakar V. (2002). Glutamatergic changes with treatment in attention deficit hyperactivity disorder: a preliminary case series. J. Child Adolesc. Psychopharmacol. 12, 331–336.10.1089/104454602762599871
    1. Carrey N. J., MacMaster F. P., Gaudet L., Schmidt M. H. (2007). Striatal creatine and glutamate/glutamine in attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 17, 11–17.10.1089/cap.2006.0008
    1. Castells X., Ramos-Quiroga J. A., Rigau D., Bosch R., Nogueira M., Vidal X., et al. (2011). Efficacy of methylphenidate for adults with attention-deficit hyperactivity disorder: a meta-regression analysis. CNS Drugs 25, 157–169.10.2165/11539440-000000000-00000
    1. Chalmers I., Bracken M. B., Djulbegovic B., Garattini S., Grant J., Gülmezoglu A. M., et al. (2014). How to increase value and reduce waste when research priorities are set. Lancet 383, 156–165.10.1016/S0140-6736(13)62229-1
    1. Chan A.-W., Song F., Vickers A., Jefferson T., Dickersin K., Gøtzsche P. C., et al. (2014). Increasing value and reducing waste: addressing inaccessible research. Lancet 383, 257–266.10.1016/S0140-6736(13)62296-5
    1. Colla M., Ende G., Alm B., Deuschle M., Heuser I., Kronenberg G. (2008). Cognitive MR spectroscopy of anterior cingulate cortex in ADHD: elevated choline signal correlates with slowed hit reaction times. J. Psychiatr. Res. 42, 587–595.10.1016/j.jpsychires.2007.06.006
    1. Conners C. K. (1999). Conners’ Adult ADHD Rating Scales (CAARS). North Tonawanda, NY: Multi-Health Systems.
    1. Courvoisie H., Hooper S. R., Fine C., Kwock L., Castillo M. (2004). Neurometabolic functioning and neuropsychological correlates in children with ADHD-H: preliminary findings. J. Neuropsychiatry Clin. Neurosci. 16, 63–69.10.1176/jnp.16.1.63
    1. Domino E. F. (2008). Tobacco smoking and MRI/MRS brain abnormalities compared to nonsmokers. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 1778–1781.10.1016/j.pnpbp.2008.09.004
    1. Dramsdahl M., Ersland L., Plessen K. J., Haavik J., Hugdahl K., Specht K. (2011). Adults with attention-deficit/hyperactivity disorder – a brain magnetic resonance spectroscopy study. Front. Psychiatry 2:65.10.3389/fpsyt.2011.00065
    1. Edden R. A. E., Crocetti D., Zhu H., Gilbert D. L., Mostofsky S. H. (2012). Reduced GABA concentration in attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 69, 750–753.10.1001/archgenpsychiatry.2011.2280
    1. Fayed N., Modrego P. J. (2005). Comparative study of cerebral white matter in autism and attention-deficit/hyperactivity disorder by means of magnetic resonance spectroscopy. Acad. Radiol. 12, 566–569.10.1016/j.acra.2005.01.016
    1. Fayed N., Modrego P. J., Castillo J., Dávila J. (2007). Evidence of brain dysfunction in attention deficit-hyperactivity disorder: a controlled study with proton magnetic resonance spectroscopy. Acad. Radiol. 14, 1029–1035.10.1016/j.acra.2007.05.017
    1. Ferreira P. E. M. S., Palmini A., Bau C. H. D., Grevet E. H., Hoefel J. R., Rohde L. A., et al. (2009). Differentiating attention-deficit/hyperactivity disorder inattentive and combined types: a (1)H-magnetic resonance spectroscopy study of fronto-striato-thalamic regions. J. Neural Transm. 116, 623–629.10.1007/s00702-009-0191-3
    1. Frodl T., Skokauskas N. (2012). Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr. Scand. 125, 114–126.10.1111/j.1600-0447.2011.01786.x
    1. Glasziou P., Altman D. G., Bossuyt P., Boutron I., Clarke M., Julious S., et al. (2014). Reducing waste from incomplete or unusable reports of biomedical research. Lancet 383, 267–276.10.1016/S0140-6736(13)62228-X
    1. Hammerness P., Biederman J., Petty C., Henin A., Moore C. M. (2012). Brain biochemical effects of methylphenidate treatment using proton magnetic spectroscopy in youth with attention-deficit hyperactivity disorder: a controlled pilot study. CNS Neurosci. Ther. 18, 34–40.10.1111/j.1755-5949.2010.00226.x
    1. Hautzinger M. (2006). Das Beck Depressionsinventar II. Deutsche Bearbeitung und Handbuch zum BDI II. Frankfurt am Main: Harcourt Test Services.
    1. Helms G. (2008). The principles of quantification applied to in vivo proton MR spectroscopy. Eur. J. Radiol. 67, 218–229.10.1016/j.ejrad.2008.02.034
    1. Hesslinger B., Thiel T., van Tebartz Elst L., Hennig J., Ebert D. (2001). Attention-deficit disorder in adults with or without hyperactivity: where is the difference? A study in humans using short echo (1)H-magnetic resonance spectroscopy. Neurosci. Lett. 304, 117–119.10.1016/S0304-3940(01)01730-X
    1. Husarova V., Bittsansky M., Ondrejka I., Dobrota D. (2014). Prefrontal grey and white matter neurometabolite changes after atomoxetine and methylphenidate in children with attention deficit/hyperactivity disorder: a (1)H magnetic resonance spectroscopy study. Psychiatry Res. 222, 75–83.10.1016/j.pscychresns.2014.03.003
    1. Ioannidis J. P. A., Greenland S., Hlatky M. A., Khoury M. J., Macleod M. R., Moher D., et al. (2014). Increasing value and reducing waste in research design, conduct, and analysis. Lancet 383, 166–175.10.1016/S0140-6736(13)62227-8
    1. Jin Z., Zang Y. F., Zeng Y. W., Zhang L., Wang Y. F. (2001). Striatal neuronal loss or dysfunction and choline rise in children with attention-deficit hyperactivity disorder: a 1H-magnetic resonance spectroscopy study. Neurosci. Lett. 315, 45–48.10.1016/S0304-3940(01)02315-1
    1. Jung R. E., Brooks W. M., Yeo R. A., Chiulli S. J., Weers D. C., Sibbitt W. L. (1999). Biochemical markers of intelligence: a proton MR spectroscopy study of normal human brain. Proc. Biol. Sci. 266, 1375–1379.10.1098/rspb.1999.0790
    1. Kaiser L. G., Schuff N., Cashdollar N., Weiner M. W. (2005). Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol. Aging 26, 665–672.10.1016/j.neurobiolaging.2004.07.001
    1. Kronenberg G., Ende G., Alm B., Deuschle M., Heuser I., Colla M. (2008). Increased NAA and reduced choline levels in the anterior cingulum following chronic methylphenidate. A spectroscopic test-retest study in adult ADHD. Eur. Arch. Psychiatry Clin. Neurosci. 258, 446–450.10.1007/s00406-008-0810-2
    1. Lehrl S., Triebig G., Fischer B. (1995). Multiple choice vocabulary test MWT as a valid and short test to estimate premorbid intelligence. Acta Neurol. Scand. 91, 335–345.10.1111/j.1600-0404.1995.tb07018.x
    1. Macleod M. R., Michie S., Roberts I., Dirnagl U., Chalmers I., Ioannidis J. P. A., et al. (2014). Biomedical research: increasing value, reducing waste. Lancet 383, 101–104.10.1016/S0140-6736(13)62329-6
    1. MacMaster F. P., Carrey N., Sparkes S., Kusumakar V. (2003). Proton spectroscopy in medication-free pediatric attention-deficit/hyperactivity disorder. Biol. Psychiatry 53, 184–187.10.1016/S0006-3223(02)01401-4
    1. Maltezos S., Horder J., Coghlan S., Skirrow C., O’Gorman R., Lavender T. J., et al. (2014). Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study. Transl. Psychiatry 4, e373.10.1038/tp.2014.11
    1. Moore C. M., Biederman J., Wozniak J., Mick E., Aleardi M., Wardrop M., et al. (2006). Differences in brain chemistry in children and adolescents with attention deficit hyperactivity disorder with and without comorbid bipolar disorder: a proton magnetic resonance spectroscopy study. Am. J. Psychiatry 163, 316–318.10.1176/appi.ajp.163.2.316
    1. Nakao T., Radua J., Rubia K., Mataix-Cols D. (2011). Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am. J. Psychiatry 168, 1154–1163.10.1176/appi.ajp.2011.11020281
    1. Perlov E., Philipsen A., Hesslinger B., Buechert M., Ahrendts J., Feige B., et al. (2007). Reduced cingulate glutamate/glutamine-to-creatine ratios in adult patients with attention deficit/hyperactivity disorder – a magnet resonance spectroscopy study. J. Psychiatr. Res. 41, 934–941.10.1016/j.jpsychires.2006.12.007
    1. Perlov E., Philipsen A., Matthies S., Drieling T., Maier S., Bubl E., et al. (2009). Spectroscopic findings in attention-deficit/hyperactivity disorder: review and meta-analysis. World J. Biol. Psychiatry 10, 355–365.10.1080/15622970802176032
    1. Perlov E., van Tebarzt Elst L., Buechert M., Maier S., Matthies S., Ebert D., et al. (2010). H1-MR-spectroscopy of cerebellum in adult attention deficit/hyperactivity disorder. J. Psychiatr. Res. 44, 938–943.10.1016/j.jpsychires.2010.02.016
    1. Philipsen A. (2008). P R Ü F P L A N: Vergleich einer strukturierten störungsspezifischen Gruppenpsychotherapie plus Placebo oder Methylphenidat versus einer psychiatrischen Beratung plus Placebo oder Methylphenidat bei ADHS im Erwachsenenalter – eine erste randomisierte Multizenter-Studie (BMBF-ADHD-C1). Available at:
    1. Philipsen A. (2012). Psychotherapy in adult attention deficit hyperactivity disorder: implications for treatment and research. Expert Rev. Neurother. 12, 1217–1225.10.1586/ern.12.91
    1. Philipsen A., Graf E., Jans T., Matthies S., Borel P., Colla M., et al. (2014). A randomized controlled multicenter trial on the multimodal treatment of adult attention-deficit hyperactivity disorder: enrollment and characteristics of the study sample. Atten. Defic. Hyperact. Disord. 6, 35–47.10.1007/s12402-013-0120-z
    1. Philipsen A., Graf E., van Tebartz Elst L., Jans T., Warnke A., Hesslinger B., et al. (2010). Evaluation of the efficacy and effectiveness of a structured disorder tailored psychotherapy in ADHD in adults: study protocol of a randomized controlled multicentre trial. Atten. Defic. Hyperact. Disord. 2, 203–212.10.1007/s12402-010-0046-7
    1. Philipsen A., Hesslinger B., van Tebartz Elst L. (2008). Attention deficit hyperactivity disorder in adulthood: diagnosis, etiology and therapy. Dtsch. Arztebl. Int. 105, 311–317.10.3238/arztebl.2008.0311
    1. Provencher S. W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672–679.10.1002/mrm.1910300604
    1. Provencher S. W. (2001). Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR. Biomed. 14, 260–264.10.1002/nbm.698
    1. Retz-Junginger P., Retz W., Blocher D., Weijers H. G., Trott G. E., Wender P. H., et al. (2002). Wender Utah Rating Scale (WURS-k) Die deutsche Kurzform zur retrospektiven Erfassung des hyperkinetischen Syndroms bei Erwachsenen. Nervenarzt 73, 830–838.10.1007/s00115-001-1215-x
    1. Ross B., Bluml S. (2001). Magnetic resonance spectroscopy of the human brain. Anat. Rec. 265, 54–84.10.1002/ar.1058
    1. Soliva J. C., Moreno A., Fauquet J., Bielsa A., Carmona S., Gispert J. D., et al. (2010). Cerebellar neurometabolite abnormalities in pediatric attention/deficit hyperactivity disorder: a proton MR spectroscopic study. Neurosci. Lett. 470, 60–64.10.1016/j.neulet.2009.12.056
    1. Sparkes S. J., MacMaster F. P., Carrey N. C. (2004). Proton magnetic resonance spectroscopy and cognitive function in pediatric attention-deficit/hyperactive disorder. Brain Cogn. 54, 173–175.10.1016/S0278-2626(03)00268-9
    1. Stanley J. A., Kipp H., Greisenegger E., MacMaster F. P., Panchalingam K., Keshavan M. S., et al. (2008). Evidence of developmental alterations in cortical and subcortical regions of children with attention-deficit/hyperactivity disorder: a multivoxel in vivo phosphorus 31 spectroscopy study. Arch. Gen. Psychiatry 65, 1419–1428.10.1001/archgenpsychiatry.2008.503
    1. Stanley J. A., Kipp H., Greisenegger E., MacMaster F. P., Panchalingam K., Pettegrew J. W., et al. (2006). Regionally specific alterations in membrane phospholipids in children with ADHD: an in vivo 31P spectroscopy study. Psychiatry Res. 148, 217–221.10.1016/j.pscychresns.2006.08.003
    1. Sun L., Jin Z., Zang Y.-F., Zeng Y.-W., Liu G., Li Y., et al. (2005). Differences between attention-deficit disorder with and without hyperactivity: a 1H-magnetic resonance spectroscopy study. Brain Dev. 27, 340–344.10.1016/j.braindev.2004.09.004
    1. Tafazoli S., O’Neill J., Bejjani A., Ly R., Salamon N., McCracken J. T., et al. (2013). 1H MRSI of middle frontal gyrus in pediatric ADHD. J. Psychiatr. Res. 47, 505–512.10.1016/j.jpsychires.2012.11.011
    1. Tebartz van Elst L., Ebert D., Hesslinger B. (2006). Depression – augmentation or switch after initial SSRI treatment. N. Engl. J. Med. 354, 2611–2613.10.1056/NEJMc066200
    1. Tebartz van Elst L., Maier S., Fangmeier T., Endres D., Mueller G. T., Nickel K., et al. (2014a). Magnetic resonance spectroscopy comparing adults with high functioning autism and above average IQ. Mol. Psychiatry 19, 1251.10.1038/mp.2014.160
    1. Tebartz van Elst L., Maier S., Fangmeier T., Endres D., Mueller G. T., Nickel K., et al. (2014b). Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: evidence in support of the excitatory/inhibitory imbalance hypothesis. Mol. Psychiatry 19, 1314–1325.10.1038/mp.2014.62
    1. Tebartz van Elst L., Perlov E. (2013). Epilepsie und Psyche. Psychische Störungen bei Epilepsie – epileptische Phänomene in der Psychiatrie. 1. Aufl. Stuttgart: Kohlhammer, 123–129.
    1. Tebartz van Elst L., Pick M., Biscaldi M., Fangmeier T., Riedel A. (2013). High-functioning autism spectrum disorder as a basic disorder in adult psychiatry and psychotherapy: psychopathological presentation, clinical relevance and therapeutic concepts. Eur. Arch. Psychiatry Clin. Neurosci. 263(Suppl 2), S189–S196.10.1007/s00406-013-0459-3
    1. Tekin S., Cummings J. L. (2002). Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J. Psychosom. Res. 53, 647–654.10.1016/S0022-3999(02)00428-2
    1. Volkow N. D., Swanson J. M. (2013). Clinical practice: adult attention deficit-hyperactivity disorder. N. Engl. J. Med. 369, 1935–1944.10.1056/NEJMcp1212625
    1. Wiguna T., Guerrero A. P. S., Wibisono S., Sastroasmoro S. (2012). Effect of 12-week administration of 20-mg long-acting methylphenidate on Glu/Cr, NAA/Cr, Cho/Cr, and mI/Cr ratios in the prefrontal cortices of school-age children in Indonesia: a study using 1H magnetic resonance spectroscopy (MRS). Clin. Neuropharmacol. 35, 81–85.10.1097/WNF.0b013e3182452572
    1. Wiguna T., Guerrero A. P. S., Wibisono S., Sastroasmoro S. (2014). The amygdala’s neurochemical ratios after 12 weeks administration of 20 mg long-acting methylphenidate in children with attention deficit and hyperactivity disorder: a pilot study using (1)H magnetic resonance spectroscopy. Clin. Psychopharmacol. Neurosci. 12, 137–141.10.9758/cpn.2014.12.2.137
    1. Yang P., Wu M.-T., Dung S.-S., Ko C.-W. (2010). Short-TE proton magnetic resonance spectroscopy investigation in adolescents with attention-deficit hyperactivity disorder. Psychiatry Res. 181, 199–203.10.1016/j.pscychresns.2009.10.001
    1. Yeo R. A., Hill D. E., Campbell R. A., Vigil J., Petropoulos H., Hart B., et al. (2003). Proton magnetic resonance spectroscopy investigation of the right frontal lobe in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 42, 303–310.10.1097/00004583-200303000-00010

Source: PubMed

3
Abonnieren