In vivo Brillouin optical microscopy of the human eye

Giuliano Scarcelli, Seok Hyun Yun, Giuliano Scarcelli, Seok Hyun Yun

Abstract

We report the first Brillouin measurement of the human eye in vivo. We constructed a Brillouin optical scanner safe for human use by employing continuous-wave laser light at 780 nm at a low power of 0.7 mW. With a single scan along the optic axis of the eye, the axial profile of Brillouin frequency shift was obtained with a pixel acquisition time of 0.4 s and axial resolution of about 60 μm, showing the depth-dependent biomechanical properties in the cornea and lens.

Figures

Fig. 1
Fig. 1
Schematic of the Brillouin confocal microscope. OI: Optical isolator. ND: Neutral density filter wheel; BS: beam sampler; SMF: single mode fiber.
Fig. 2
Fig. 2
Laser illumination in the Brillouin scanner. By focusing the beam in the transparent tissue of the anterior chamber (cornea, aqueous humor and lens), the beam is diverging and covers a large area when it hits the retina.
Fig. 3
Fig. 3
Representative Brillouin spectra (anti-Stokes peaks) from a human eye. (a) Corneal stroma. (b) Aqueous humor. (c) Lens nucleus. (d) Vitreous humor. Top panels: raw CCD spectra (average of four frames). Bottom panels: corresponding spectra.
Fig. 4
Fig. 4
In vivo Brillouin measurement of a human eye. (a) Depth profile of the crystalline lens. (b) Depth profile of the anterior chamber. The data are an average of four such scans taken ten minutes apart.

References

    1. Scarcelli G., Yun S. H., “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).10.1038/nphoton.2007.250
    1. Bao X., DeMerchant M., Brown A., Bremner T., “Tensile and compressive strain measurement in the lab and field with the distributed Brillouin scattering sensor,” J. Lightwave Technol. 19(11), 1698–1704 (2001).10.1109/50.964070
    1. Hickman G. D., Harding J. M., Carnes M., Pressman A., Kattawar G. W., Fry E. S., “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Environ. 36(3), 165–178 (1991).10.1016/0034-4257(91)90054-A
    1. Randall J., Vaughan J. M., “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci. 214(1197), 449–470 (1982).10.1098/rspb.1982.0021
    1. Vaughan J. M., Randall J. T., “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).10.1038/284489a0
    1. Scarcelli G., Yun S. H., “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).10.1364/OE.19.010913
    1. Reiß S., Burau G., Stachs O., Guthoff R., Stolz H., “Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens,” Biomed. Opt. Express 2(8), 2144–2159 (2011).10.1364/BOE.2.002144
    1. Scarcelli G., Kim P., Yun S. H., “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).10.1016/j.bpj.2011.08.008
    1. Bailey S. T., Twa M. D., Gump J. C., Venkiteshwar M., Bullimore M. A., Sooryakumar R., “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57(12), 2910–2917 (2010).10.1109/TBME.2010.2052393
    1. Scarcelli G., Pineda R., Yun S. H., “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).10.1167/iovs.11-8281
    1. Ethier C. R., Johnson M., Ruberti J., “Ocular biomechanics and biotransport,” Annu. Rev. Biomed. Eng. 6(1), 249–273 (2004).10.1146/annurev.bioeng.6.040803.140055
    1. Scarcelli G., Kim P., Yun S. H., “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).10.1364/OL.33.002979
    1. Sliney D., Aron-Rosa D., DeLori F., Fankhauser F., Landry R., Mainster M., Marshall J., Rassow B., Stuck B., Trokel S., West T. M., Wolffe M., International Commission on Non-Ionizing Radiation Protection , “Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: statement from a task group of the international commission on non-ionizing radiation Protection (ICNIRP),” Appl. Opt. 44(11), 2162–2176 (2005).10.1364/AO.44.002162
    1. Okuno T., Kojima M., Hata I., Sliney D. H., “Temperature rises in the crystalline lens from focal irradiation,” Health Phys. 88(3), 214–222 (2005).10.1097/01.HP.0000146581.72675.aa
    1. Delori F. C., Webb R. H., Sliney D. H., American National Standards Institute , “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).10.1364/JOSAA.24.001250
    1. Jones C. E., Atchison D. A., Meder R., Pope J. M., “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).10.1016/j.visres.2005.03.008
    1. arede Castro A., Siedlecki D., Borja D., Uhlhorn S., Parel J.-M., Manns F., Marcos S., “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).10.1080/09500340.2011.565888
    1. Kohlhaas M., Spoerl E., Schilde T., Unger G., Wittig C., Pillunat L. E., “Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light,” J. Cataract Refract. Surg. 32(2), 279–283 (2006).10.1016/j.jcrs.2005.12.092
    1. Randleman J. B., Dawson D. G., Grossniklaus H. E., McCarey B. E., Edelhauser H. F., “Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery,” J. Refract. Surg. 24(1), S85–S89 (2008).
    1. De Korte C. L., Van Der Steen A. F. W., Thijssen J. M., Duindam J. J., Otto C., Puppels G. J., “Relation between local acoustic parameters and protein distribution in human and porcine eye lenses,” Exp. Eye Res. 59(5), 617–627 (1994).10.1006/exer.1994.1147
    1. McGinty S. J., Truscott R. J. W., “Presbyopia: the first stage of nuclear cataract?” Ophthalmic Res. 38(3), 137–148 (2006).10.1159/000090645
    1. Roberts C., “The cornea is not a piece of plastic,” J. Refract. Surg. 16(4), 407–413 (2000).
    1. Luce D. A., “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31(1), 156–162 (2005).10.1016/j.jcrs.2004.10.044
    1. Fontes B. M., Ambrósio R., Jr, Velarde G. C., Nosé W., “Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes,” J. Refract. Surg. 27(3), 209–215 (2011).
    1. Glasser A., Campbell M. C. W., “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).10.1016/S0042-6989(98)00283-1

Source: PubMed

3
Abonnieren