Between-course targeting of methotrexate exposure using pharmacokinetically guided dosage adjustments

Jennifer L Pauley, John C Panetta, Kristine R Crews, Deqing Pei, Cheng Cheng, John McCormick, Scott C Howard, John T Sandlund, Sima Jeha, Raul Ribeiro, Jeffrey Rubnitz, Ching-Hon Pui, William E Evans, Mary V Relling, Jennifer L Pauley, John C Panetta, Kristine R Crews, Deqing Pei, Cheng Cheng, John McCormick, Scott C Howard, John T Sandlund, Sima Jeha, Raul Ribeiro, Jeffrey Rubnitz, Ching-Hon Pui, William E Evans, Mary V Relling

Abstract

Purpose: It is advantageous to individualize high-dose methotrexate (HDMTX) to maintain adequate exposure while minimizing toxicities. Previously, we accomplished this through within-course dose adjustments.

Methods: In this study, we evaluated a strategy to individualize HDMTX based on clearance of each individual's previous course of HDMTX in 485 patients with newly diagnosed acute lymphoblastic leukemia. Doses were individualized to achieve a steady-state plasma concentration (Cpss) of 33 or 65 μM (approximately 2.5 or 5 g/m(2)/day) for low- and standard-/high-risk patients, respectively.

Results: Individualized doses resulted in 70 and 63 % of courses being within 20 % of the targeted Cpss in the low- and standard-/high-risk arms, respectively, compared to 60 % (p < 0.001) and 61 % (p = 0.43) with conventionally dosed therapy. Only 1.3 % of the individualized courses in the standard-/high-risk arm had a Cpss greater than 50 % above the target compared to 7.3 % (p < 0.001) in conventionally dosed therapy. We observed a low rate (8.5 % of courses) of grade 3-4 toxicities. The odds of gastrointestinal toxicity were related to methotrexate plasma concentrations in both the low (p = 0.021)- and standard-/high-risk groups (p = 0.003).

Conclusions: Individualizing HDMTX based on the clearance from the prior course resulted in fewer extreme Cpss values and less delayed excretion compared to conventional dosing.

Figures

Fig. 1
Fig. 1
Methotrexate clearance, MTX CL (ml/min/m2), by course and risk arm. The horizontal line in each box represents the median, the shaded boxes represent the quartiles, and the whiskers represent the range observed in patients for each course. The solid horizontal line across all courses represents the population clearance for all courses
Fig. 2
Fig. 2
Percentage of courses based on achieved MTX plasma steady-state concentrations (Cpss) (individualized therapy) compared to the percentage predicted based on conventional dosing (simulated for fixed doses). The groups are defined as follows: Dark Blue Cpss greater than 50 % below target Cpss, Light Blue Cpss between 20 and 50 % below target, Green Cpss within ±20 % of the target, Yellow Cpss between 20 and 50 % above target, Red Cpss greater than 50 % above target. *Significance (p < 0.001) in the difference in the proportion of courses between individualized therapy relative to simulated fixed dose therapy (otherwise p > 0.1). a Low-risk arm: target concentration: 33 μM. b Standard-/high-risk arm: target concentration: 65 μM

References

    1. Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC, Ribeiro RC, Rubnitz JE, Raimondi SC, Onciu M, Coustan-Smith E, Kun LE, Jeha S, Cheng C, Howard SC, Simmons V, Bayles A, Metzger ML, Boyett JM, Leung W, Handgretinger R, Downing JR, Evans WE, Relling MV. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 2009;360:2730–2741. doi: 10.1056/NEJMoa0900386.
    1. Pui CH, Pei D, Sandlund JT, Ribeiro RC, Rubnitz JE, Raimondi SC, Onciu M, Campana D, Kun LE, Jeha S, Cheng C, Howard SC, Metzger ML, Bhojwani D, Downing JR, Evans WE, Relling MV. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia. 2010;24:371–382. doi: 10.1038/leu.2009.252.
    1. Conter V, Arico M, Basso G, Biondi A, Barisone E, Messina C, Parasole R, De Rossi G, Locatelli F, Pession A, Santoro N, Micalizzi C, Citterio M, Rizzari C, Silvestri D, Rondelli R, Lo Nigro L, Ziino O, Testi AM, Masera G, Valsecchi MG. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) Studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. Leukemia. 2010;24:255–264. doi: 10.1038/leu.2009.250.
    1. Moricke A, Zimmermann M, Reiter A, Henze G, Schrauder A, Gadner H, Ludwig WD, Ritter J, Harbott J, Mann G, Klingebiel T, Zintl F, Niemeyer C, Kremens B, Niggli F, Niethammer D, Welte K, Stanulla M, Odenwald E, Riehm H, Schrappe M. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24:265–284. doi: 10.1038/leu.2009.257.
    1. Gaynon PS, Angiolillo AL, Carroll WL, Nachman JB, Trigg ME, Sather HN, Hunger SP, Devidas M. Long-term results of the children’s cancer group studies for childhood acute lymphoblastic leukemia 1983–2002: a children’s oncology group report. Leukemia. 2010;24:285–297. doi: 10.1038/leu.2009.262.
    1. Reiter A, Schrappe M, Ludwig WD, Hiddemann W, Sauter S, Henze G, Zimmermann M, Lampert F, Havers W, Niethammer D, et al. Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood. 1994;84:3122–3133.
    1. Chauvenet AR, Martin PL, Devidas M, Linda SB, Bell BA, Kurtzberg J, Pullen J, Pettenati MJ, Carroll AJ, Shuster JJ, Camitta B. Antimetabolite therapy for lesser-risk B-lineage acute lymphoblastic leukemia of childhood: a report from children’s oncology group study P9201. Blood. 2007;110:1105–1111. doi: 10.1182/blood-2006-12-061689.
    1. Silverman LB, Gelber RD, Dalton VK, Asselin BL, Barr RD, Clavell LA, Hurwitz CA, Moghrabi A, Samson Y, Schorin MA, Arkin S, Declerck L, Cohen HJ, Sallan SE. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91–01. Blood. 2001;97:1211–1218. doi: 10.1182/blood.V97.5.1211.
    1. Clarke M, Gaynon P, Hann I, Harrison G, Masera G, Peto R, Richards S. CNS-directed therapy for childhood acute lymphoblastic leukemia: childhood ALL Collaborative Group overview of 43 randomized trials. J Clin Oncol. 2003;21:1798–1809. doi: 10.1200/JCO.2003.08.047.
    1. Galpin AJ, Schuetz JD, Masson E, Yanishevski Y, Synold TW, Barredo JC, Pui CH, Relling MV, Evans WE. Differences in folylpolyglutamate synthetase and dihydrofolate reductase expression in human B-lineage versus T-lineage leukemic lymphoblasts: mechanisms for lineage differences in methotrexate polyglutamylation and cytotoxicity. Mol Pharmacol. 1997;52:155–163.
    1. Pui CH, Sallan S, Relling MV, Masera G, Evans WE (2001) International childhood acute lymphoblastic leukemia workshop: Sausalito, CA, 30 Nov–1 Dec 2000. Leukemia 15: 707–15
    1. Asselin BL, Devidas M, Wang C, Pullen J, Borowitz MJ, Hutchison R, Lipshultz SE, Camitta BM. Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404) Blood. 2011;118:874–883. doi: 10.1182/blood-2010-06-292615.
    1. Evans WE, Relling MV, Rodman JH, Crom WR, Boyett JM, Pui CH. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med. 1998;338:499–505. doi: 10.1056/NEJM199802193380803.
    1. Lauer SJ, Shuster JJ, Mahoney DH, Jr, Winick N, Toledano S, Munoz L, Kiefer G, Pullen JD, Steuber CP, Camitta BM. A comparison of early intensive methotrexate/mercaptopurine with early intensive alternating combination chemotherapy for high-risk B-precursor acute lymphoblastic leukemia: a pediatric oncology group phase III randomized trial. Leukemia. 2001;15:1038–1045. doi: 10.1038/sj.leu.2402132.
    1. Mahoney DH, Jr, Shuster JJ, Nitschke R, Lauer SJ, Steuber CP, Winick N, Camitta B. Acute neurotoxicity in children with B-precursor acute lymphoid leukemia: an association with intermediate-dose intravenous methotrexate and intrathecal triple therapy–a pediatric oncology group study. J Clin Oncol. 1998;16:1712–1722.
    1. Whitehead VM, Vuchich MJ, Cooley LD, Lauer SJ, Mahoney DH, Shuster JJ, Payment C, Koch PA, Akabutu JJ, Bowen T, Kamen BA, Ravindranath Y, Emami A, Look AT, Beardsley GP, Pullen DJ, Camitta B. Accumulation of methotrexate polyglutamates, ploidy and trisomies of both chromosomes 4 and 10 in lymphoblasts from children with B-progenitor cell acute lymphoblastic leukemia: a pediatric oncology group study. Leuk Lymphoma. 1998;31:507–519.
    1. Chan H, Evans WE, Pratt CB. Recovery from toxicity associated with high-dose methotrexate: prognostic factors. Cancer Treat Rep. 1977;61:797–804.
    1. Von Hoff DD, Penta JS, Helman LJ, Slavik M. Incidence of drug-related deaths secondary to high-dose methotrexate and citrovorum factor administration. Cancer Treat Rep. 1977;61:745–748.
    1. Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11:694–703. doi: 10.1634/theoncologist.11-6-694.
    1. Gupta S, Antillon FA, Bonilla M, Fu L, Howard SC, Ribeiro RC, Sung L. Treatment-related mortality in children with acute lymphoblastic leukemia in Central America. Cancer. 2011;117:4788–4795. doi: 10.1002/cncr.26107.
    1. Buchen S, Ngampolo D, Melton RG, Hasan C, Zoubek A, Henze G, Bode U, Fleischhack G. Carboxypeptidase G2 rescue in patients with methotrexate intoxication and renal failure. Br J Cancer. 2005;92:480–487.
    1. Relling MV, Fairclough D, Ayers D, Crom WR, Rodman JH, Pui CH, Evans WE. Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol. 1994;12:1667–1672.
    1. Evans WE, Pratt CB, Taylor RH, Barker LF, Crom WR. Pharmacokinetic monitoring of high-dose methotrexate. Early recognition of high-risk patients. Cancer Chemother Pharmacol. 1979;3:161–166. doi: 10.1007/BF00262416.
    1. Crom WR, Evans WE. Methotrexate. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics: principles of therapeutic drug monitoring. San Francisco: Applied Therapeutics; 1992. pp. 1–42.
    1. Allegra CJ. Antifolates. In: Chabner BA, Collins JM, editors. Cancer chemotherapy: principles and practice. Philadelphia: Lippincott; 1990. pp. 110–153.
    1. Barredo JC, Synold TW, Laver J, Relling MV, Pui CH, Priest DG, Evans WE. Differences in constitutive and post-methotrexate folylpolyglutamate synthetase activity in B-lineage and T-lineage leukemia. Blood. 1994;84:564–569.
    1. Rask C, Albertioni F, Bentzen SM, Schroeder H, Peterson C. Clinical and pharmacokinetic risk factors for high-dose methotrexate-induced toxicity in children with acute lymphoblastic leukemia—a logistic regression analysis. Acta Oncol. 1998;37:277–284. doi: 10.1080/028418698429586.
    1. Masson E, Relling MV, Synold TW, Liu Q, Schuetz JD, Sandlund JT, Pui CH, Evans WE. Accumulation of methotrexate polyglutamates in lymphoblasts is a determinant of antileukemic effects in vivo. A rationale for high-dose methotrexate. J Clin Invest. 1996;97:73–80. doi: 10.1172/JCI118409.
    1. Wall AM, Gajjar A, Link A, Mahmoud H, Pui CH, Relling MV. Individualized methotrexate dosing in children with relapsed acute lymphoblastic leukemia. Leukemia. 2000;14:221–225. doi: 10.1038/sj.leu.2401673.
    1. Mikkelsen TS, Sparreboom A, Cheng C, Zhou Y, Boyett JM, Raimondi SC, Panetta JC, Bowman WP, Sandlund JT, Pui CH, Relling MV, Evans WE. Shortening infusion time for high-dose methotrexate alters antileukemic effects: a randomized prospective clinical trial. J Clin Oncol. 2011;29:1771–1778. doi: 10.1200/JCO.2010.32.5340.
    1. Dombrowsky E, Jayaraman B, Narayan M, Barrett JS. Evaluating performance of a decision support system to improve methotrexate pharmacotherapy in children and young adults with cancer. Ther Drug Monit. 2011;33:99–107. doi: 10.1097/FTD.0b013e318203b41e.
    1. Aumente D, Buelga DS, Lukas JC, Gomez P, Torres A, Garcia MJ. Population pharmacokinetics of high-dose methotrexate in children with acute lymphoblastic leukaemia. Clin Pharmacokinet. 2006;45:1227–1238. doi: 10.2165/00003088-200645120-00007.
    1. Faltaos DW, Hulot JS, Urien S, Morel V, Kaloshi G, Fernandez C, Xuan KH, Leblond V, Lechat P. Population pharmacokinetic study of methotrexate in patients with lymphoid malignancy. Cancer Chemother Pharmacol. 2006;58:626–633. doi: 10.1007/s00280-006-0202-0.
    1. D’Argenio D, Schumitzky A. ADAPT II user’s guide. Los Angeles: Biomedical Simulations Resource; 1990.
    1. Evans WE, Stewart CF, Hutson PR, Cairnes DA, Bowman WP, Yee GC, Crom WR. Disposition of intermediate-dose methotrexate in children with acute lymphocytic leukemia. Drug Intell Clin Pharm. 1982;16:839–842.
    1. Crom WR, Glynn AM, Abromowitch M, Pui CH, Dodge R, Evans WE. Use of the automatic interaction detector method to identify patient characteristics related to methotrexate clearance. Clin Pharmacol Ther. 1986;39:592–597. doi: 10.1038/clpt.1986.102.
    1. Draper NR, Smith H. Applied regression analysis. New York: Wiley; 1998.
    1. Pui CH, Simone JV, Hancock ML, Evans WE, Williams DL, Bowman WP, Dahl GV, Dodge RK, Ochs J, Abromowitch M, et al. Impact of three methods of treatment intensification on acute lymphoblastic leukemia in children: long-term results of St Jude total therapy study X. Leukemia. 1992;6:150–157.
    1. Lopez–Lopez E, Martin-Guerrero I, Ballesteros J, Pinan MA, Garcia-Miguel P, Navajas A, Garcia-Orad A. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57:612–619. doi: 10.1002/pbc.23074.
    1. D’Angelo V, Ramaglia M, Iannotta A, Crisci S, Indolfi P, Francese M, Affinita MC, Pecoraro G, Napolitano A, Fusco C, Oreste M, Indolfi C, Casale F. Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants. Cancer Chemother Pharmacol. 2011;68:1339–1346. doi: 10.1007/s00280-011-1665-1.
    1. Woessmann W, Seidemann K, Mann G, Zimmermann M, Burkhardt B, Oschlies I, Ludwig WD, Klingebiel T, Graf N, Gruhn B, Juergens H, Niggli F, Parwaresch R, Gadner H, Riehm H, Schrappe M, Reiter A. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM group study NHL-BFM95. Blood. 2005;105:948–958. doi: 10.1182/blood-2004-03-0973.
    1. Stoller RG, Hande KR, Jacobs SA, Rosenberg SA, Chabner BA. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med. 1977;297:630–634. doi: 10.1056/NEJM197709222971203.

Source: PubMed

3
Abonnieren