Unique molecular signature in mucolipidosis type IV microglia

Antony Cougnoux, Rebecca A Drummond, Mason Fellmeth, Fatemeh Navid, Amanda L Collar, James Iben, Ashok B Kulkarni, James Pickel, Raphael Schiffmann, Christopher A Wassif, Niamh X Cawley, Michail S Lionakis, Forbes D Porter, Antony Cougnoux, Rebecca A Drummond, Mason Fellmeth, Fatemeh Navid, Amanda L Collar, James Iben, Ashok B Kulkarni, James Pickel, Raphael Schiffmann, Christopher A Wassif, Niamh X Cawley, Michail S Lionakis, Forbes D Porter

Abstract

Background: Lysosomal storage diseases (LSD) are a large family of inherited disorders characterized by abnormal endolysosomal accumulation of cellular material due to catabolic enzyme and transporter deficiencies. Depending on the affected metabolic pathway, LSD manifest with somatic or central nervous system (CNS) signs and symptoms. Neuroinflammation is a hallmark feature of LSD with CNS involvement such as mucolipidosis type IV, but not of others like Fabry disease.

Methods: We investigated the properties of microglia from LSD with and without major CNS involvement in 2-month-old mucolipidosis type IV (Mcoln1-/-) and Fabry disease (Glay/-) mice, respectively, by using a combination of flow cytometric, RNA sequencing, biochemical, in vitro and immunofluorescence analyses.

Results: We characterized microglia activation and transcriptome from mucolipidosis type IV and Fabry disease mice to determine if impaired lysosomal function is sufficient to prime these brain-resident immune cells. Consistent with the neurological pathology observed in mucolipidosis type IV, Mcoln1-/- microglia demonstrated an activation profile with a mixed neuroprotective/neurotoxic expression pattern similar to the one we previously observed in Niemann-Pick disease, type C1, another LSD with significant CNS involvement. In contrast, the Fabry disease microglia transcriptome revealed minimal alterations, consistent with the relative lack of CNS symptoms in this disease. The changes observed in Mcoln1-/- microglia showed significant overlap with alterations previously reported for other common neuroinflammatory disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Indeed, our comparison of microglia transcriptomes from Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick disease, type C1 and mucolipidosis type IV mouse models showed an enrichment in "disease-associated microglia" pattern among these diseases.

Conclusions: The similarities in microglial transcriptomes and features of neuroinflammation and microglial activation in rare monogenic disorders where the primary metabolic disturbance is known may provide novel insights into the immunopathogenesis of other more common neuroinflammatory disorders.

Trial registration: ClinicalTrials.gov, NCT01067742, registered on February 12, 2010.

Keywords: CCL5; Fabry disease; Lysosomal disease; Microglia; Mucolipidosis type IV; Neuroinflammation.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Figures

Fig. 1
Fig. 1
Analysis of the microglia in Fabry disease and mucolipidosis type IV mice. Mean fluorescence intensity (MFI) of the surface expression of microglial lineage markers a CX3CR1 and CD11b and microglial activation markers. N ≥ 5; *p < 0.05, **p < 0.01 Mann-Whitney U test vs. WT. b CD86 and MHCII. WT, control; FD, 2-month-old Fabry disease; MLIV, 2-, 4-, and 8-month-old mucolipidosis type IV. N ≥ 5; *p < 0.05, **p < 0.01 Mann-Whitney U test vs. WT. c DCFDA analysis of free radical production by 10,000 microglial cells. 1 μM H2O2 treatment was used as a positive control for free radical production. N = 5, n ≥ 3; *p < 0.05, **p < 0.01 Mann-Whitney U test vs. WT. d Western blot analysis iNOS, P-ERK1/2, ERK1/2, and HIF1α and β-tubulin on 100,000 microglia lysates. N = 4, *p < 0.05 Mann-Whitney U test. e Basal extracellular acidification rate (ECAR) in mpH.minutes−1 of unbuffered seahorse media by 10,000 cells. N = 5, n ≥ 3; *p < 0.05 Mann-Whitney U test vs. WT
Fig. 2
Fig. 2
Microglia transcriptome analysis. a Heatmap of the microglia/macrophage activation markers in MLIV and FD expressed as Log2 fold change relative to control levels. b Heatmap of neurotoxic and neuroprotective markers in MLIV and FD expressed as Log2 fold change relative to control levels. The genes in this list are based upon [16, 24, 44]. c Top 50 most differentially overexpressed genes in MLIV compared to control microglia. Interferon signaling genes are boxed in red. Data underlying the heatmaps are provided in Additional file 5: Table S1 and Additional file 6: Table S2
Fig. 3
Fig. 3
Analysis of CCL5 expression in microglia. aCcl5 Log2 fold change and Log10 (pAdj) in 2-month-old Fabry disease (FD), 7-week-old Niemann-Pick type C1 (NPC1), 3-month-old amyotrophy lateral sclerosis (SOD1), 16-month-old App-Ps1 (AD), and 2-month-old mucolipidsosis type IV (MLIV) microglia isolated from mouse brain b IBA1 and CCL5 double staining in hippocampi. The scale bar is 10 μm. c CCL5 quantification by enzyme-linked immunosorbent assay (ELISA) in mouse serum. Npc1−/−N = 7, MLIV N = 8, FD N = 16, 2-month-old Gaa−/− (Pompe disease) N = 10, 3-month-old Npc2/N = 7, Sod1tgG93AN = 4, 2-, 3-, and 6-month-old Cln3/N = 4–6. HPβCD/VTS-270-treated animals were subcutaneously injected every other day from day 7 to 49 [24], N = 4 and 5 for control and Npc1/−, respectively. d CCL5 ELISA from control and MLIV patient’s serum. Ncontrol = 14, NMLIV = 48
Fig. 4
Fig. 4
Comparison of microglia transcriptomes in diseases with neuroinflammation. a Volcano plot differentially expressed genes X = Log2 fold change vs control, Y = − Log10(p). The data are supplied in Additional file 7: Table S3. The dashed lines are set at the pAdj of 0.05 and Log2 fold change of – 1 and 1 on Y- and X-axis, respectively. b Venn diagram of the significantly differentially expressed genes (pAdj < 0.05, Log2FC > 1) genes in ALS (SOD1), AD (APP), NPC1, and MLIV disease mouse models. c Heatmap of the 100 modified genes AD, ALS, MLIV, and NPC1 diseases across aging (aged and ERCC1) and FD datasets. Yellow: DAM markers. Orange: HIF1 signaling. Blue: lysosome. The heatmap with all genes labeled is provided in Additional file 4: Figure S4a

References

    1. Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15(5):300–312. doi: 10.1038/nrn3722.
    1. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547–551. doi: 10.1038/nature13989.
    1. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci. 2013;7:45. doi: 10.3389/fncel.2013.00045.
    1. Pressey SN, Smith DA, Wong AM, Platt FM, Cooper JD. Early glial activation, synaptic changes and axonal pathology in the thalamocortical system of Niemann-Pick type C1 mice. Neurobiol Dis. 2012;45(3):1086–1100. doi: 10.1016/j.nbd.2011.12.027.
    1. Xiong J, Kielian T. Microglia in juvenile neuronal ceroid lipofuscinosis are primed toward a pro-inflammatory phenotype. J Neurochem. 2013;127(2):245–258. doi: 10.1111/jnc.12385.
    1. Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia. 2013;61(1):71–90. doi: 10.1002/glia.22350.
    1. German DC, Liang CL, Song T, Yazdani U, Xie C, Dietschy JM. Neurodegeneration in the Niemann-Pick C mouse: glial involvement. Neuroscience. 2002;109(3):437–450. doi: 10.1016/S0306-4522(01)00517-6.
    1. Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7(4):354–365. doi: 10.1016/j.nurt.2010.05.014.
    1. Takano T. Role of Microglia in Autism: Recent Advances. Dev Neurosci. 2015;37(3):195–202. doi: 10.1159/000398791.
    1. Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT. Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci. 2014;8:315. doi: 10.3389/fnins.2014.00315.
    1. Vincenti JE, Murphy L, Grabert K, McColl BW, Cancellotti E, Freeman TC, et al. Defining the microglia response during the time course of chronic neurodegeneration. J Virol. 2015;90(6):3003–3017. doi: 10.1128/JVI.02613-15.
    1. Qian L, Flood PM. Microglial cells and Parkinson’s disease. Immunol Res. 2008;41(3):155–164. doi: 10.1007/s12026-008-8018-0.
    1. Peake KB, Campenot RB, Vance DE, Vance JE. Niemann-Pick type C1 deficiency in microglia does not cause neuron death in vitro. Biochim Biophys Acta. 2011;1812(9):1121–1129. doi: 10.1016/j.bbadis.2011.06.003.
    1. Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol. 2014;88(4):594–604. doi: 10.1016/j.bcp.2014.01.008.
    1. Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, et al. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol Commun. 2015;3:31. doi: 10.1186/s40478-015-0203-5.
    1. Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O'Keeffe S, Phatnani HP, et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep. 2013;4(2):385–401. doi: 10.1016/j.celrep.2013.06.018.
    1. Grishchuk Y, Sri S, Rudinskiy N, Ma W, Stember KG, Cottle MW, et al. Behavioral deficits, early gliosis, dysmyelination and synaptic dysfunction in a mouse model of mucolipidosis IV. Acta Neuropathol Commun. 2014;2:133. doi: 10.1186/s40478-014-0133-7.
    1. Vellodi A. Lysosomal storage disorders. Br J Haematol. 2005;128(4):413–431. doi: 10.1111/j.1365-2141.2004.05293.x.
    1. Ohshima T, Murray GJ, Swaim WD, Longenecker G, Quirk JM, Cardarelli CO, et al. alpha-Galactosidase A deficient mice: a model of Fabry disease. Proc Natl Acad Sci U S A. 1997;94(6):2540–2544. doi: 10.1073/pnas.94.6.2540.
    1. Micsenyi MC, Dobrenis K, Stephney G, Pickel J, Vanier MT, Slaugenhaupt SA, et al. Neuropathology of the Mcoln1(-/-) knockout mouse model of mucolipidosis type IV. J Neuropathol Exp Neurol. 2009;68(2):125–135. doi: 10.1097/NEN.0b013e3181942cf0.
    1. Venugopal B, Browning MF, Curcio-Morelli C, Varro A, Michaud N, Nanthakumar N, et al. Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am J Hum Genet. 2007;81(5):1070–1083. doi: 10.1086/521954.
    1. Kolodny E, Fellgiebel A, Hilz MJ, Sims K, Caruso P, Phan TG, et al. Cerebrovascular involvement in Fabry disease: current status of knowledge. Stroke. 2015;46(1):302–313. doi: 10.1161/STROKEAHA.114.006283.
    1. Vitner EB, Farfel-Becker T, Ferreira NS, Leshkowitz D, Sharma P, Lang KS, et al. Induction of the type I interferon response in neurological forms of Gaucher disease. J Neuroinflammation. 2016;13(1):104. doi: 10.1186/s12974-016-0570-2.
    1. Cougnoux A, Drummond RA, Collar AL, Iben JR, Salman A, Westgarth H, et al. Microglia activation in Niemann-Pick disease, type C1 is amendable to therapeutic intervention. Hum Mol Genet. 2018;27(12):2076–2089. doi: 10.1093/hmg/ddy112.
    1. Bassi MT, Manzoni M, Monti E, Pizzo MT, Ballabio A, Borsani G. Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am J Hum Genet. 2000;67(5):1110–1120. doi: 10.1016/S0002-9297(07)62941-3.
    1. Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M, Frumkin A, et al. Identification of the gene causing mucolipidosis type IV. Nat Genet. 2000;26(1):118–123. doi: 10.1038/79095.
    1. Boudewyn LC, Walkley SU. Current concepts in the neuropathogenesis of mucolipidosis type IV. J Neurochem. 2019;148(5):669–689. doi: 10.1111/jnc.14462.
    1. Walker MT, Montell C. Suppression of the motor deficit in a mucolipidosis type IV mouse model by bone marrow transplantation. Hum Mol Genet. 2016;25(13):2752–2761.
    1. Boudewyn LC, Sikora J, Kuchar L, Ledvinova J, Grishchuk Y, Wang SL, et al. N-butyldeoxynojirimycin delays motor deficits, cerebellar microgliosis, and Purkinje cell loss in a mouse model of mucolipidosis type IV. Neurobiol Dis. 2017;105:257–270. doi: 10.1016/j.nbd.2017.06.003.
    1. Raben N, Lu N, Nagaraju K, Rivera Y, Lee A, Yan B, et al. Conditional tissue-specific expression of the acid alpha-glucosidase (GAA) gene in the GAA knockout mice: implications for therapy. Hum Mol Genet. 2001;10(19):2039–2047. doi: 10.1093/hmg/10.19.2039.
    1. Lionakis MS, Lim JK, Lee CC, Murphy PM. Organ-specific innate immune responses in a mouse model of invasive candidiasis. Journal of innate immunity. 2011;3(2):180–199. doi: 10.1159/000321157.
    1. Drummond RA, Swamydas M, Oikonomou V, Zhai B, Dambuza IM, Schaefer BC, et al. CARD9(+) microglia promote antifungal immunity via IL-1beta- and CXCL1-mediated neutrophil recruitment. Nat Immunol. 2019;20(5):559–570. doi: 10.1038/s41590-019-0377-2.
    1. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/bioinformatics/bts635.
    1. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–930. doi: 10.1093/bioinformatics/btt656.
    1. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
    1. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019.
    1. Zhang B., Kirov S., Snoddy J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Research. 2005;33(Web Server):W741–W748. doi: 10.1093/nar/gki475.
    1. Reimand Jüri, Kull Meelis, Peterson Hedi, Hansen Jaanus, Vilo Jaak. g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Research. 2007;35(suppl_2):W193–W200. doi: 10.1093/nar/gkm226.
    1. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–D452. doi: 10.1093/nar/gku1003.
    1. Kamburov A, Wierling C, Lehrach H, Herwig R. ConsensusPathDB--a database for integrating human functional interaction networks. Nucleic Acids Res. 2009;37(Database issue):D623–D628. doi: 10.1093/nar/gkn698.
    1. Vitner EB, Farfel-Becker T, Eilam R, Biton I, Futerman AH. Contribution of brain inflammation to neuronal cell death in neuronopathic forms of Gaucher’s disease. Brain : a journal of neurology. 2012;135(Pt 6):1724–1735. doi: 10.1093/brain/aws095.
    1. Wu YP, Proia RL. Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice. Proc Natl Acad Sci U S A. 2004;101(22):8425–8430. doi: 10.1073/pnas.0400625101.
    1. Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41(4):518–528. doi: 10.1016/j.immuni.2014.09.008.
    1. Szulzewsky F, Pelz A, Feng X, Synowitz M, Markovic D, Langmann T, et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One. 2015;10(2):e0116644. doi: 10.1371/journal.pone.0116644.
    1. Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ. An integrative genomics approach identifies hypoxia inducible factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Research. 2009;37(14):4587–4602. doi: 10.1093/nar/gkp425.
    1. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(7):1276–1290. doi: 10.1016/j.cell.2017.05.018.
    1. Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol. 2015;17(3):288–299. doi: 10.1038/ncb3114.
    1. Haskins M, Jones TE, Lu Q, Bareiss SK. Early alterations in blood and brain RANTES and MCP-1 expression and the effect of exercise frequency in the 3xTg-AD mouse model of Alzheimer’s disease. Neurosci Lett. 2016;610:165–170. doi: 10.1016/j.neulet.2015.11.002.
    1. Tripathy D, Thirumangalakudi L, Grammas P. RANTES upregulation in the Alzheimer’s disease brain: a possible neuroprotective role. Neurobiol Aging. 2010;31(1):8–16. doi: 10.1016/j.neurobiolaging.2008.03.009.
    1. Lopez ME, Klein AD, Scott MP. Complement is dispensable for neurodegeneration in Niemann-Pick disease type C. J Neuroinflamm. 2012;9.
    1. Parviainen L, Dihanich S, Anderson GW, Wong AM, Brooks HR, Abeti R, et al. Glial cells are functionally impaired in juvenile neuronal ceroid lipofuscinosis and detrimental to neurons. Acta Neuropathol Com. 2017;5.
    1. Smith D, Wallom KL, Williams IM, Jeyakumar M, Platt FM. Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiol Dis. 2009;36(2):242–251. doi: 10.1016/j.nbd.2009.07.010.
    1. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research. 2002;30(1):207–210. doi: 10.1093/nar/30.1.207.
    1. Weeda G, Donker I, de Wit J, Morreau H, Janssens R, Vissers CJ, et al. Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr Biol. 1997;7(6):427–439. doi: 10.1016/S0960-9822(06)00190-4.
    1. Lim MJ, Alexander N, Benedict JW, Chattopadhyay S, Shemilt SJ, Guerin CJ, et al. IgG entry and deposition are components of the neuroimmune response in Batten disease. Neurobiol Dis. 2007;25(2):239–251. doi: 10.1016/j.nbd.2006.09.005.
    1. Kester MI, van der Flier WM, Visser A, Blankenstein MA, Scheltens P, Oudejans CB. Decreased mRNA expression of CCL5 [RANTES] in Alzheimer’s disease blood samples. Clin Chem Lab Med. 2012;50(1):61–65. doi: 10.1515/cclm.2011.731.
    1. Vitner EB, Salomon R, Farfel-Becker T, Meshcheriakova A, Ali M, Klein AD, et al. RIPK3 as a potential therapeutic target for Gaucher's disease. Nat Med. 2014;20(2):204–208. doi: 10.1038/nm.3449.
    1. Cougnoux A, Clifford S, Salman A, Ng SL, Bertin J, Porter FD. Necroptosis inhibition as a therapy for Niemann-Pick disease, type C1: Inhibition of RIP kinases and combination therapy with 2-hydroxypropyl-beta-cyclodextrin. Mol Genet Metab. 2018;125(4):345–350. doi: 10.1016/j.ymgme.2018.10.009.
    1. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126(5):855–867. doi: 10.1016/j.cell.2006.08.019.
    1. Kamphuis W, Kooijman L, Schetters S, Orre M, Hol EM. Transcriptional profiling of CD11c-positive microglia accumulating around amyloid plaques in a mouse model for Alzheimer’s disease. Biochim Biophys Acta. 2016;1862(10):1847–1860. doi: 10.1016/j.bbadis.2016.07.007.
    1. Pluvinage JV, Haney MS, Smith BAH, Sun J, Iram T, Bonanno L, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature. 2019;568(7751):187–192. doi: 10.1038/s41586-019-1088-4.

Source: PubMed

3
Abonnieren