Personalised nutrition advice reduces intake of discretionary foods and beverages: findings from the Food4Me randomised controlled trial

Katherine M Livingstone, Carlos Celis-Morales, Santiago Navas-Carretero, Rodrigo San-Cristobal, Hannah Forster, Clara Woolhead, Clare B O'Donovan, George Moschonis, Yannis Manios, Iwona Traczyk, Thomas E Gundersen, Christian A Drevon, Cyril F M Marsaux, Rosalind Fallaize, Anna L Macready, Hannelore Daniel, Wim H M Saris, Julie A Lovegrove, Mike Gibney, Eileen R Gibney, Marianne Walsh, Lorraine Brennan, J Alfredo Martinez, John C Mathers, Food4Me Study, Katherine M Livingstone, Carlos Celis-Morales, Santiago Navas-Carretero, Rodrigo San-Cristobal, Hannah Forster, Clara Woolhead, Clare B O'Donovan, George Moschonis, Yannis Manios, Iwona Traczyk, Thomas E Gundersen, Christian A Drevon, Cyril F M Marsaux, Rosalind Fallaize, Anna L Macready, Hannelore Daniel, Wim H M Saris, Julie A Lovegrove, Mike Gibney, Eileen R Gibney, Marianne Walsh, Lorraine Brennan, J Alfredo Martinez, John C Mathers, Food4Me Study

Abstract

Background: The effect of personalised nutrition advice on discretionary foods intake is unknown. To date, two national classifications for discretionary foods have been derived. This study examined changes in intake of discretionary foods and beverages following a personalised nutrition intervention using these two classifications.

Methods: Participants were recruited into a 6-month RCT across seven European countries (Food4Me) and were randomised to receive generalised dietary advice (control) or one of three levels of personalised nutrition advice (based on diet [L1], phenotype [L2] and genotype [L3]). Dietary intake was derived from an FFQ. An analysis of covariance was used to determine intervention effects at month 6 between personalised nutrition (overall and by levels) and control on i) percentage energy from discretionary items and ii) percentage contribution of total fat, SFA, total sugars and salt to discretionary intake, defined by Food Standards Scotland (FSS) and Australian Dietary Guidelines (ADG) classifications.

Results: Of the 1607 adults at baseline, n = 1270 (57% female) completed the intervention. Percentage sugars from FSS discretionary items was lower in personalised nutrition vs control (19.0 ± 0.37 vs 21.1 ± 0.65; P = 0.005). Percentage energy (31.2 ± 0.59 vs 32.7 ± 0.59; P = 0.031), percentage total fat (31.5 ± 0.37 vs 33.3 ± 0.65; P = 0.021), SFA (36.0 ± 0.43 vs 37.8 ± 0.75; P = 0.034) and sugars (31.7 ± 0.44 vs 34.7 ± 0.78; P < 0.001) from ADG discretionary items were lower in personalised nutrition vs control. There were greater reductions in ADG percentage energy and percentage total fat, SFA and salt for those randomised to L3 vs L2.

Conclusions: Compared with generalised dietary advice, personalised nutrition advice achieved greater reductions in discretionary foods intake when the classification included all foods high in fat, added sugars and salt. Future personalised nutrition approaches may be used to target intake of discretionary foods.

Trial registration: Clinicaltrials.gov NCT01530139 . Registered 9 February 2012.

Keywords: Adults, Food4Me; Discretionary; Discretionary foods and beverages; European; Internet-based; Intervention; Personalised nutrition.

Conflict of interest statement

TEG is the CEO of Vitas Ltd. TEG and CAD have shares in Vitas Ltd., and CAD is a board member and consultant in Vitas Ltd.; no other conflict of interests. KML is a consultant for HeadUp Labs Pty Ltd. WHMS has received research support from several food companies such as Nestle, DSM, Unilever, Nutrition et Sante and Danone as well as pharmaceutical companies such as GSK, Novartis and Novo Nordisk and grants from the European Union. He is an unpaid scientific adviser for the International Life Science Institute, ILSI Europe. MG reports that he is a non-remunerated member of the Google Food Innovation Lab Community of Practice on Personalized Nutrition. JCM reports grants from European Union, during the conduct of the study; grants and personal fees from Medical Research Council, grants and personal fees from Biotechnology and Biological Sciences Research Council, personal fees and non-financial support from Waltham Pet Nutrition, personal fees and non-financial support from University of Wageningen, The Netherlands, non-financial support from Technical University Munich, non-financial support from University College Dublin, non-financial support from University of Groningen, The Netherlands, non-financial support from University of Maastricht, The Netherlands, outside the submitted work. JAL has received research funding outside of the submitted work from Medical Research Council, Biotechnology and Biological Sciences Research Council and European Union with in kind provision of foods from Arla, AAK and Unilever and research funding from the Dairy Council, UK. She was a member of the UK Government’s Scientific Advisory Committee for Nutrition (SACN) and a member of SACNs Carbohydrate Working Group and Saturated Fats Working Group during and after the study. For all other authors no conflict of interest is reported.

Figures

Fig. 1
Fig. 1
Intakes of discretionary foods and beverages (%E) at baseline for participants in seven European countries. Values represent means ± SE. FSS, Food Standards Scotland classification of discretionary foods and beverages. ADG, Australian Dietary Guidelines classification of discretionary foods and beverages

References

    1. Bechthold A, Boeing H, Tetens I, Schwingshackl L, Nöthlings U. Perspective: food-based dietary guidelines in Europe—scientific concepts, current status, and perspectives. Adv Nutr. 2018;9(5):544–560. doi: 10.1093/advances/nmy033.
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th Edition. December 2015.17 June 2020. Available from: . Accessed 10 May 2020.
    1. Australian Government National Health and Medical Research Council Department of Health and Ageing. Eat for Health. Australian Dietary Guidelines2013 21 October 2016. Available from: . Accessed 8 May 2020.
    1. Food Standards Scotland. Briefing paper on discretionary foods2018 19 April 2020. Available from: . Accessed 6 May 2020.
    1. Australian Bureau of Statistics Australian Health Survey: Users' Guide 2011–13 Catalogue No 4363.0.55.001. Australian Health Survey: Users' Guide, 2011–13, Catalogue No 4363.0.55.001 2015 [Available from: . Accessed 5 May 2020.
    1. Tapsell LC, Neale EP, Satija A, Hu FB. Foods, nutrients, and dietary patterns: interconnections and implications for dietary guidelines. Adv Nutr. 2016;7(3):445–454. doi: 10.3945/an.115.011718.
    1. Baker P, Machado P, Santos T, Sievert K, Backholer K, Hadjikakou M, et al. Ultra-processed foods and the nutrition transition: global, regional and national trends, food systems transformations and political economy drivers. Obes Rev. 2020;21:1–22.
    1. Rangan AM, Schindeler S, Hector DJ, Gill TP, Webb KL. Consumption of ‘extra’ foods by Australian adults: types, quantities and contribution to energy and nutrient intakes. Eur J Clin Nutr. 2009;63(7):865–871. doi: 10.1038/ejcn.2008.51.
    1. Mercado CI, Cogswell ME, Perrine CG, Gillespie C. Diet quality associated with Total sodium intake among US adults aged ≥18 years-National Health and nutrition examination survey, 2009-2012. Nutrients. 2017;9(11):1164. doi: 10.3390/nu9111164.
    1. Rivera JA, Pedraza LS, Aburto TC, Batis C, Sánchez-Pimienta TG, González de Cosío T, et al. Overview of the dietary intakes of the Mexican population: results from the National Health and nutrition survey 2012. J Nutr. 2016;146(9):1851S–1855S. doi: 10.3945/jn.115.221275.
    1. Brand-Miller JC, Barclay AW. Declining consumption of added sugars and sugar-sweetened beverages in Australia: a challenge for obesity prevention. Am J Clin Nutr. 2017;105(4):854–863. doi: 10.3945/ajcn.116.145318.
    1. Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. 2017;136(3):e1–e23.
    1. Howard Barbara V, Wylie-Rosett J. Sugar and cardiovascular disease. Circulation. 2002;106(4):523–527. doi: 10.1161/01.CIR.0000019552.77778.04.
    1. Anderson JJ, Gray SR, Welsh P, Mackay DF, Celis-Morales CA, Lyall DM, Forbes J, Sattar N, Gill JMR, Pell JP. The associations of sugar-sweetened, artificially sweetened and naturally sweet juices with all-cause mortality in 198,285 UK biobank participants: a prospective cohort study. BMC Med. 2020;18(1):97. doi: 10.1186/s12916-020-01554-5.
    1. Singh GM, Micha R, Khatibzadeh S, Lim S, Ezzati M, Mozaffarian D. Estimated Global, Regional, and National Disease Burdens Related to Sugar-Sweetened Beverage Consumption in 2010. Circulation. 2015;132(8):639–66.
    1. Vargas-Garcia EJ, Evans CEL, Prestwich A, Sykes-Muskett BJ, Hooson J, Cade JE. Interventions to reduce consumption of sugar-sweetened beverages or increase water intake: evidence from a systematic review and meta-analysis. 2017;18(11):1350–63. 10.1111/obr.12580.
    1. Grieger JA, Wycherley TP, Johnson BJ, Golley RK. Discrete strategies to reduce intake of discretionary food choices: a scoping review. Int J Behav Nutr Phys Act. 2016;13(1):57. doi: 10.1186/s12966-016-0380-z.
    1. Celis-Morales C, Livingstone KM, Marsaux CFM, Forster H, O’Donovan CB, Woolhead C, Macready AL, Fallaize R, Navas-Carretero S, San-Cristobal R, Kolossa S, Hartwig K, Tsirigoti L, Lambrinou CP, Moschonis G, Godlewska M, Surwiłło A, Grimaldi K, Bouwman J, Daly EJ, Akujobi V, O’Riordan R, Hoonhout J, Claassen A, Hoeller U, Gundersen TE, Kaland SE, Matthews JNS, Manios Y, Traczyk I, Drevon CA, Gibney ER, Brennan L, Walsh MC, Lovegrove JA, Alfredo Martinez J, Saris WHM, Daniel H, Gibney M, Mathers JC. Design and baseline characteristics of the Food4Me study: a web-based randomised controlled trial of personalised nutrition in seven European countries. Genes Nutr. 2015;10(1):450. doi: 10.1007/s12263-014-0450-2.
    1. Bush CL, Blumberg JB, El-Sohemy A, Minich DM, Ordovás JM, Reed DG, et al. Toward the definition of personalized nutrition: a proposal by the American nutrition association. J Am Coll Nutr. 2020;39(1):5–15. doi: 10.1080/07315724.2019.1685332.
    1. Celis-Morales C, Lara J, Mathers JC. Personalising nutritional guidance for more effective behaviour change. Proc Nutr Soc. 2014;12:1–9.
    1. Nielsen DE, El-Sohemy A. Disclosure of genetic information and change in dietary intake: a randomized controlled trial. PLoS One. 2014;9(11):e112665. doi: 10.1371/journal.pone.0112665.
    1. Jinnette R, Narita A, Manning B, McNaughton SA, Mathers JC, Livingstone KM. Does personalized nutrition advice improve dietary intake in healthy adults? A systematic review of randomized controlled trials. Adv Nutr. 2020. 10.1093/advances/nmaa144.
    1. Celis-Morales C, Livingstone KM, Marsaux CFM, Macready AL, Fallaize R, O’Donovan CB, et al. Effect of personalized nutrition on health-related behaviour change: evidence from the Food4me European randomized controlled trial. Int J Epidemiol. 2016;46:578–88.
    1. Celis-Morales C, Livingstone KM, Marsaux CFM, Macready AL, Fallaize R, O’Donovan CB, et al. Effect of personalized nutrition on health-related behaviour change: evidence from the Food4me European randomized controlled trial. Int J Epidemiol. 2016:dyw186. 10.1093/ije/dyw186.
    1. Livingstone KM, Celis-Morales C, Navas-Carretero S, San-Cristobal R, Macready AL, Fallaize R, Forster H, Woolhead C, O'Donovan CB, Marsaux CF, Kolossa S, Tsirigoti L, Lambrinou CP, Moschonis G, Godlewska M, Surwiłło A, Drevon CA, Manios Y, Traczyk I, Gibney ER, Brennan L, Walsh MC, Lovegrove JA, Saris WH, Daniel H, Gibney M, Martinez JA, Mathers JC, Food4Me Study Effect of an internet-based, personalized nutrition randomized trial on dietary changes associated with the Mediterranean diet: the Food4Me study. Am J Clin Nutr. 2016;104(2):288–297. doi: 10.3945/ajcn.115.129049.
    1. Celis-Morales C, Livingstone KM, Petermann-Rocha F, Navas-Carretero S, San-Cristobal R, O'Donovan CB, Moschonis G, Manios Y, Traczyk I, Drevon CA, Daniel H, Marsaux CFM, Saris WHM, Fallaize R, Macready AL, Lovegrove JA, Gibney M, Gibney ER, Walsh M, Brennan L, Martinez JA, Mathers JC, Food4Me Study Frequent nutritional feedback, personalized advice, and behavioral changes: findings from the European Food4Me internet-based RCT. Am J Prev Med. 2019;57(2):209–219. doi: 10.1016/j.amepre.2019.03.024.
    1. Food4Me. An integrated analysis of opportunities and challenges for personalised nutrition 2016 [Available from: . Accessed 17 June 2020.
    1. Celis-Morales C, Marsaux CF, Livingstone KM, Navas-Carretero S, San-Cristobal R, Fallaize R, et al. Can genetic-based advice help you lose weight? Findings from the Food4Me European randomized controlled trial. Am J Clin Nutr. 2017;105(5):1204–1213. doi: 10.3945/ajcn.116.145680.
    1. Marsaux CF, Celis-Morales C, Livingstone KM, Fallaize R, Kolossa S, Hallmann J, et al. Changes in physical activity following a genetic-based internet-delivered personalized intervention: randomized controlled trial (Food4Me) J Med Internet Res. 2016;18(2):e30. doi: 10.2196/jmir.5198.
    1. Macready AL, Fallaize R, Butler LT, Ellis JA, Kuznesof S, Frewer LJ, et al. Application of Behavior Change Techniques in a Personalized Nutrition Electronic Health Intervention Study: Protocol for the Web-Based Food4Me Randomized Controlled Trial. JMIR Res Protoc. 2018;7(4):e87. doi: 10.2196/resprot.8703.
    1. Baecke JA, Burema J, Frijters JE. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982;36(5):936–942. doi: 10.1093/ajcn/36.5.936.
    1. Forster H, Walsh MC, O'Donovan CB, Woolhead C, McGirr C, Daly EJ, O'Riordan R, Celis-Morales C, Fallaize R, Macready AL, Marsaux CFM, Navas-Carretero S, San-Cristobal R, Kolossa S, Hartwig K, Mavrogianni C, Tsirigoti L, Lambrinou CP, Godlewska M, Surwiłło A, Gjelstad IMF, Drevon CA, Manios Y, Traczyk I, Martinez JA, Saris WHM, Daniel H, Lovegrove JA, Mathers JC, Gibney MJ, Gibney ER, Brennan L. A dietary feedback system for the delivery of consistent personalized dietary advice in the web-based multicenter Food4Me study. J Med Internet Res. 2016;18(6):e150. doi: 10.2196/jmir.5620.
    1. Forster HFR, Gallagher C, O’Donovan CB, Woolhead C, Walsh MC, Macready AL, Lovegrove JA, Mathers JC, Gibney MJ, Brennan L, Gibney ER. Online dietary intake estimation: the Food4Me food frequency questionnaire. J Med Internet Res. 2014;16(6):e150. doi: 10.2196/jmir.3105.
    1. Fallaize R, Forster H, Macready AL, Walsh MC, Mathers JC, Brennan L, Gibney ER, Gibney MJ, Lovegrove JA. Online dietary intake estimation: reproducibility and validity of the Food4Me food frequency questionnaire against a 4-day weighed food record. J Med Internet Res. 2014;16(8):e190. doi: 10.2196/jmir.3355.
    1. IUNA. National Adult Nutrition Survey 2011 [Available from: . Accessed 18 June 2020.
    1. Food Standards Agency . McCance and Widdowson's The Composition of Foods. Sixth summary edition ed. Cambridge: Royal Society of Chemistry; 2002.
    1. Goldberg GR, Black AE, Jebb SA, Cole TJ, Murgatroyd PR, Coward WA, Prentice AM. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr. 1991;45(12):569–581.
    1. Henry CJK. Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutr. 2005;8(7 A):1133–1152. doi: 10.1079/PHN2005801.
    1. Hébert JR, Peterson KE, Hurley TG, Stoddard AM, Cohen N, Field AE, Sorensen G. The effect of social desirability trait on self-reported dietary measures among multi-ethnic female health center employees. Ann Epidemiol. 2001;11(6):417–427. doi: 10.1016/S1047-2797(01)00212-5.
    1. World Health Organisation. Global Recommendations on Physical Activity for Health 2010 [Available from: . Accessed 21 Sept 2020.
    1. World Health Organization. The challenge of obesity - quick statistics 2014 [Available from: . Accessed 20 Sept 2020.
    1. Celis-Morales C, Livingstone KM, Woolhead C, Forster H, O'Donovan CB, Macready AL, et al. How reliable is internet-based self-reported identity, socio-demographic and obesity measures in European adults?. Genes Nutr. 2015;10:28. 10.1007/s12263-015-0476-0.
    1. Perneger TV. What's wrong with Bonferroni adjustments. BMJ. 1998;316(7139):1236–1238. doi: 10.1136/bmj.316.7139.1236.
    1. Livingstone KM, Celis-Morales C, Macready AL, Fallaize R, Forster H, Woolhead C, O’Donovan CB, Marsaux CFM, Navas-Carretero S, San-Cristobal R, Kolossa S, Tsirigoti L, Lambrinou CP, Moschonis G, Surwiłło A, Drevon CA, Manios Y, Traczyk I, Gibney ER, Brennan L, Walsh MC, Lovegrove JA, Martinez JA, Saris WHM, Daniel H, Gibney M, Mathers JC. Characteristics of European adults who dropped out from the Food4Me internet-based personalised nutrition intervention. Public Health Nutr. 2017;20(1):53–63. doi: 10.1017/S1368980016002020.
    1. Yau A, Adams J, Monsivais P. Time trends in adherence to UK dietary recommendations and associated sociodemographic inequalities, 1986-2012: a repeated cross-sectional analysis. Eur J Clin Nutr. 2019;73(7):997–1005. doi: 10.1038/s41430-018-0347-z.
    1. Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean Diet and Cardiovascular Health. Circ Res. 2019;124(5):779–98.
    1. Sui Z, Wong W, Louie JCY, Rangan A. Discretionary food and beverage consumption and its association with demographic characteristics, weight status, and fruit and vegetable intakes in Australian adults. Public Health Nutr. 2016;20:274–281. doi: 10.1017/S1368980016002305.
    1. Australian Bureau of Statistics. 4364.0.55.007 - Australian Health Survey: Nutrition First Results - Foods and Nutrients, 2011–12 2014 [Available from: . Accessed 15 June 2020.
    1. Machado PP, Steele EM, Louzada MLC, Levy RB, Rangan A, Woods J, et al. Ultra-processed food consumption drives excessive free sugar intake among all age groups in Australia. Eur J Nutr. 2020;59(6):2783–2792. doi: 10.1007/s00394-019-02125-y.
    1. Rauber F, Da Costa Louzada ML, Steele EM, Millett C, Monteiro CA, Levy RB. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014) Nutrients. 2018;10(5):587. doi: 10.3390/nu10050587.
    1. Fallaize R, Celis-Morales C, Macready AL, Marsaux CF, Forster H, O'Donovan C, Woolhead C, San-Cristobal R, Kolossa S, Hallmann J, Mavrogianni C, Surwillo A, Livingstone KM, Moschonis G, Navas-Carretero S, Walsh MC, Gibney ER, Brennan L, Bouwman J, Grimaldi K, Manios Y, Traczyk I, Drevon CA, Martinez JA, Daniel H, Saris WH, Gibney MJ, Mathers JC, Lovegrove JA, Food4Me Study The effect of the apolipoprotein E genotype on response to personalized dietary advice intervention: findings from the Food4Me randomized controlled trial. Am J Clin Nutr. 2016;104(3):827–836. doi: 10.3945/ajcn.116.135012.
    1. Grech A, Hasick M, Gemming L, Rangan A. Energy misreporting is more prevalent for those of lower socioeconomic status and is associated with lower reported intake of discretionary foods. Br J Nutr. 2020:1–22. 10.1017/S0007114520003621.
    1. Hebert JR, Hurley TG, Peterson KE, Resnicow K, Thompson FE, Yaroch AL, Ehlers M, Midthune D, Williams GC, Greene GW, Nebeling L. Social desirability trait influences on self-reported dietary measures among diverse participants in a multicenter multiple risk factor trial. J Nutr. 2008;138(1):226S–234S. doi: 10.1093/jn/138.1.226S.
    1. Duffy VB, Hayes JE, Sullivan BS, Faghri P. Surveying Food and Beverage Liking. Ann N Y Acad Sci. 2009;1170(1):558–68.
    1. Livingstone KM, Celis-Morales C, Navas-Carretero S, San-Cristobal R, O’Donovan CB, Forster H, et al. Profile of European adults interested in internet-based personalized nutrition: The Food4Me Study. Eur J Nutr. 2015. 10.1007/s00394-015-0897-y.
    1. Prestwich A, Kellar I, Parker R, MacRae S, Learmonth M, Sykes-Muskett B, et al. How can self-efficacy be increased? Meta-analysis of dietary interventions. Health Psychol Rev. 2013;8:1–16.
    1. Jaacks LM. Taxes on saturated fat, salt, and sugar improve the healthiness of grocery purchases, but changes are frustratingly small. Lancet Public Health. 2019;4(8):e363–e3e4. doi: 10.1016/S2468-2667(19)30110-0.

Source: PubMed

3
Abonnieren