The impact of MTHFR 677C → T risk knowledge on changes in folate intake: findings from the Food4Me study

Clare B O'Donovan, Marianne C Walsh, Hannah Forster, Clara Woolhead, Carlos Celis-Morales, Rosalind Fallaize, Anna L Macready, Cyril F M Marsaux, Santiago Navas-Carretero, Rodrigo San-Cristobal, Silvia Kolossa, Christina Mavrogianni, Christina P Lambrinou, George Moschonis, Magdalena Godlewska, Agnieszka Surwillo, Jildau Bouwman, Keith Grimaldi, Iwona Traczyk, Christian A Drevon, Hannelore Daniel, Yannis Manios, J Alfredo Martinez, Wim H M Saris, Julie A Lovegrove, John C Mathers, Michael J Gibney, Lorraine Brennan, Eileen R Gibney, Clare B O'Donovan, Marianne C Walsh, Hannah Forster, Clara Woolhead, Carlos Celis-Morales, Rosalind Fallaize, Anna L Macready, Cyril F M Marsaux, Santiago Navas-Carretero, Rodrigo San-Cristobal, Silvia Kolossa, Christina Mavrogianni, Christina P Lambrinou, George Moschonis, Magdalena Godlewska, Agnieszka Surwillo, Jildau Bouwman, Keith Grimaldi, Iwona Traczyk, Christian A Drevon, Hannelore Daniel, Yannis Manios, J Alfredo Martinez, Wim H M Saris, Julie A Lovegrove, John C Mathers, Michael J Gibney, Lorraine Brennan, Eileen R Gibney

Abstract

Background: It is hypothesised that individuals with knowledge of their genetic risk are more likely to make health-promoting dietary and lifestyle changes. The present study aims to test this hypothesis using data from the Food4Me study. This was a 6-month Internet-based randomised controlled trial conducted across seven centres in Europe where individuals received either general healthy eating advice or varying levels of personalised nutrition advice. Participants who received genotype-based personalised advice were informed whether they had the risk (CT/TT) (n = 178) or non-risk (CC) (n = 141) alleles of the methylenetetrahydrofolate reductase (MTHFR) gene in relation to cardiovascular health and the importance of a sufficient intake of folate. General linear model analysis was used to assess changes in folate intake between the MTHFR risk, MTHFR non-risk and control groups from baseline to month 6 of the intervention.

Results: There were no differences between the groups for age, gender or BMI. However, there was a significant difference in country distribution between the groups (p = 0.010). Baseline folate intakes were 412 ± 172, 391 ± 190 and 410 ± 186 μg per 10 MJ for the risk, non-risk and control groups, respectively. There were no significant differences between the three groups in terms of changes in folate intakes from baseline to month 6. Similarly, there were no changes in reported intake of food groups high in folate.

Conclusions: These results suggest that knowledge of MTHFR 677C → T genotype did not improve folate intake in participants with the risk variant compared with those with the non-risk variant.

Trial registration: ClinicalTrials.gov NCT01530139.

Keywords: Folate; Genetic risk knowledge; MTHFR; Methylenetetrahydrofolate reductase 677C → T genotype; Personalised nutrition.

References

    1. Kaput J. Nutrigenomics research for personalized nutrition and medicine. Curr Opin Biotechnol. 2008;19(2):110–20. doi: 10.1016/j.copbio.2008.02.005.
    1. Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363(4):301–4. doi: 10.1056/NEJMp1006304.
    1. Taylor JY, Wu CY. Effects of genetic counseling for hypertension on changes in lifestyle behaviors among African-American women. J Natl Black Nurses Assoc. 2009;20(1):1–10.
    1. Vernarelli JA, Roberts JS, Hiraki S, Chen CA, Cupples LA, Green RC. Effect of Alzheimer disease genetic risk disclosure on dietary supplement use. Am J Clin Nutr. 2010;91(5):1402–7. doi: 10.3945/ajcn.2009.28981.
    1. Grant RW, O'Brien KE, Waxler JL, Vassy JL, Delahanty LM, Bissett LG, Green RC, Stember KG, Guiducci C, Park ER, et al. Personalized genetic risk counseling to motivate diabetes prevention: a randomized trial. Diabetes Care. 2013;36(1):13–9. doi: 10.2337/dc12-0884.
    1. Metcalfe KA, Foulkes WD, Kim-Sing C, Ainsworth P, Rosen B, Armel S, Poll A, Eisen A, Gilchrist D, Chudley A, et al. Family history as a predictor of uptake of cancer preventive procedures by women with a BRCA1 or BRCA2 mutation. Clin Genet. 2008;73(5):474–9. doi: 10.1111/j.1399-0004.2008.00988.x.
    1. Hendershot CS, Otto JM, Collins SE, Liang T, Wall TL. Evaluation of a brief web-based genetic feedback intervention for reducing alcohol-related health risks associated with ALDH2. Ann Behav Med. 2010;40(1):77–88. doi: 10.1007/s12160-010-9207-3.
    1. O'Neill SC, Valdimarsdottir HB, Demarco TA, Peshkin BN, Graves KD, Brown K, Hurley KE, Isaacs C, Hecker S, Schwartz MD. BRCA1/2 test results impact risk management attitudes, intentions, and uptake. Breast Cancer Res Treat. 2010;124(3):755–64. doi: 10.1007/s10549-010-0881-4.
    1. Marteau T, Senior V, Humphries SE, Bobrow M, Cranston T, Crook MA, Day L, Fernandez M, Horne R, Iversen A, et al. Psychological impact of genetic testing for familial hypercholesterolemia within a previously aware population: a randomized controlled trial. Am J Med Genet A. 2004;128a(3):285–93. doi: 10.1002/ajmg.a.30102.
    1. Hietaranta-Luoma HL, Tahvonen R, Iso-Touru T, Puolijoki H, Hopia A. An intervention study of individual, apoE genotype-based dietary and physical-activity advice: impact on health behavior. J Nutrigenet Nutrigenomics. 2014;7(3):161–74. doi: 10.1159/000371743.
    1. Nielsen DE, El-Sohemy A. Disclosure of genetic information and change in dietary intake: a randomized controlled trial. PLoS One. 2014;9(11):e112665. doi: 10.1371/journal.pone.0112665.
    1. Marteau TM, French DP, Griffin SJ, Prevost AT, Sutton S, Watkinson C, Attwood S, Hollands GJ. Effects of communicating DNA-based disease risk estimates on risk-reducing behaviours. Cochrane Database Syst Rev. 2010(10):Cd007275. doi:10.1002/14651858.
    1. Hollands GJ, French DP, Griffin SJ, Prevost AT, Sutton S, King S, Marteau TM. The impact of communicating genetic risks of disease on risk-reducing health behaviour: systematic review with meta-analysis. BMJ. 2016;352:i1102. doi: 10.1136/bmj.i1102.
    1. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111–3. doi: 10.1038/ng0595-111.
    1. Molloy AM, Daly S, Mills JL, Kirke PN, Whitehead AS, Ramsbottom D, Conley MR, Weir DG, Scott JM. Thermolabile variant of 5,10-methylenetetrahydrofolate reductase associated with low red-cell folates: implications for folate intake recommendations. Lancet. 1997;1591–3.
    1. McNulty H, Strain JJ, Pentieva K, Ward M. C(1) metabolism and CVD outcomes in older adults. Proc Nutr Soc. 2012;71(2):213–21. doi: 10.1017/S0029665111003387.
    1. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325(7374):1202. doi: 10.1136/bmj.325.7374.1202.
    1. Marti-Carvajal AJ, Sola I, Lathyris D. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev. 2015;1
    1. Holmes MV, Newcombe P, Hubacek JA, Sofat R, Ricketts SL, Cooper J, Breteler MM, Bautista LE, Sharma P, Whittaker JC, et al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. Lancet. 2011;378(9791):584–94. doi: 10.1016/S0140-6736(11)60872-6.
    1. Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF, Tang G, Wang B, Chen D, He M, et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA. 2015;313(13):1325–35. doi: 10.1001/jama.2015.2274.
    1. Celis-Morales C, Livingstone KM, Marsaux CF, Forster H, O'Donovan CB, Woolhead C, Macready AL, Fallaize R, Navas-Carretero S, San-Cristobal R, et al. Design and baseline characteristics of the Food4Me study: a web-based randomised controlled trial of personalised nutrition in seven European countries. Genes Nutr. 2015;10(1):450. doi: 10.1007/s12263-014-0450-2.
    1. Forster H, Fallaize R, Gallagher C, O'Donovan CB, Woolhead C, Walsh MC, Macready AL, Lovegrove JA, Mathers JC, Gibney MJ, et al. Online dietary intake estimation: the Food4Me food frequency questionnaire. J Med Internet Res. 2014;16(6) doi: 10.2196/jmir.3105.
    1. Fallaize R, Forster H, Macready AL, Walsh MC, Mathers JC, Brennan L, Gibney ER, Gibney MJ, Lovegrove JA. Online dietary intake estimation: reproducibility and validity of the Food4Me food frequency questionnaire against a 4-day weighed food record. J Med Internet Res. 2014;16(8) doi: 10.2196/jmir.3355.
    1. Henry CJ. Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr. 2005;8(7a):1133–52. doi: 10.1079/PHN2005801.
    1. Goldberg GR, Black AE, Jebb SA, Cole TJ, Murgatroyd PR, Coward WA, Prentice AM. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr. 1991;45(12):569–81.
    1. Michie S, Hyder N, Walia A, West R. Development of a taxonomy of behaviour change techniques used in individual behavioural support for smoking cessation. Addict Behav. 2011;36(4):315–9. doi: 10.1016/j.addbeh.2010.11.016.
    1. Michie S, Ashford S, Sniehotta FF, Dombrowski SU, Bishop A, French DP. A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: the CALO-RE taxonomy. Psychol Health. 2011;26(11):1479–98. doi: 10.1080/08870446.2010.540664.
    1. Forster H, Walsh MC, O'Donovan CB, Woolhead C, McGirr C, Daly EJ, O'Riordan R, Celis-Morales C, Fallaize R, Macready AL, et al. A dietary feedback system for the delivery of consistent personalized dietary advice in the web-based multicenter Food4Me study. J Med Internet Res. 2016;18(6):e150. doi: 10.2196/jmir.5620.
    1. Arkadianos I, Valdes AM, Marinos E, Florou A, Gill RD, Grimaldi KA. Improved weight management using genetic information to personalize a calorie controlled diet. Nutr J. 2007;6:29. doi: 10.1186/1475-2891-6-29.
    1. Chao S, Roberts JS, Marteau TM, Silliman R, Cupples LA, Green RC. Health behavior changes after genetic risk assessment for Alzheimer disease: the REVEAL study. Alzheimer Dis Assoc Disord. 2008;22(1):94–7. doi: 10.1097/WAD.0b013e31815a9dcc.
    1. Bloss CS, Darst BF, Topol EJ, Schork NJ. Direct-to-consumer personalized genomic testing. Hum Mol Genet. 2011;20(R2):R132–41. doi: 10.1093/hmg/ddr349.
    1. Frankwich KA, Egnatios J, Kenyon ML, Rutledge TR, Liao PS, Gupta S, Herbst KL, Zarrinpar A. Differences in weight loss between persons on standard balanced vs nutrigenetic diets in a randomized controlled trial. Clin Gastroenterol Hepatol. 2015;13(9):1625–32. doi: 10.1016/j.cgh.2015.02.044.
    1. Hollands GJ, Whitwell SC, Parker RA, Prescott NJ, Forbes A, Sanderson J, Mathew CG, Lewis CM, Watts S, Sutton S, et al. Effect of communicating DNA based risk assessments for Crohn’s disease on smoking cessation: randomised controlled trial. BMJ. 2012;345:e4708. doi: 10.1136/bmj.e4708.
    1. Fanshawe TR, Prevost AT, Roberts JS, Green RC, Armstrong D, Marteau TM. Explaining behavior change after genetic testing: the problem of collinearity between test results and risk estimates. Genet Test. 2008;12(3):381–6. doi: 10.1089/gte.2007.0103.
    1. Powers HJ, Hill MH, Welfare M, Spiers A, Bal W, Russell J, Duckworth Y, Gibney E, Williams EA, Mathers JC. Responses of biomarkers of folate and riboflavin status to folate and riboflavin supplementation in healthy and colorectal polyp patients (the FAB2 study) Cancer Epidemiol Biomarkers Prev. 2007;16(10):2128–35. doi: 10.1158/1055-9965.EPI-07-0208.

Source: PubMed

3
Abonnieren